Skip to main content
Log in

Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes:fixA, fixB andetfS, etfL

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A group of four co-regulated genes (fixA, fixB, fixC, fixX) essential for symbiotic nitrogen fixation has been described in several rhizobial species, includingBradyrhizobium japonicum. The complete nucleotide sequence of theB. japonicum fixA, fixB andfixC, genes is reported here. The derived amino acid sequences confirmed the previously noted sequence similarity between FixA and the β-subunit and between FixB and the α-subunit of mammalian andParacoccus denitrificans electron transfer flavoproteins (ETF). Since the classical role of ETF is in β-oxidation of fatty acids, a process unrelated to nitrogen fixation, we rationalized thatB. japonicum ought to contain bona fideetf genes in addition to theetf-like genesfixA andfixB. Therefore, we identified, cloned, sequenced, and transcriptionally analyzed theB. japonicum etfSL genes encoding the β-and α-subunits of ETF. TheetfSL genes, but not thefix genes, are transcribed in aerobically grown cells. An amino acid sequence comparison between all available ETFs and ETF-like proteins revealed the existence of two distinguishable subfamilies. Group I comprises housekeeping ETFs that link acyl-CoA dehydrogenase reactions with the respiratory chain, such as in the fatty acid degradation pathway.B. japonicum EtfS and EtfL clearly belong to this group. Group II contains ETF-like proteins that are synthesized only under certain specific growth conditions and receive electrons from the oxidation of specific substrates. The products of the anaerobically inducedfixA andfixB genes ofB. japonicum are members of that group.B. japonicum is the first example of an organism in which genes for proteins of both groups I and II of the ETF family have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ETF :

Electron transfer flavoprotein

ETF-QO ETF:

ubiquinone oxidoreductase

References

  • Arigoni F, Kaminski PA, Hennecke H, Elmerich C (1991) Nucleotide sequence of thefixABC region ofAzorhizobium caulinodans ORS571: similarity of thefixB product with eukaryotic flavoproteins, characterization offixX, and identification ofnifW. Mol Gen Genet 225:514–520

    PubMed  Google Scholar 

  • Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat shock regulation of chaperonin gene expression inBradyrhizobium japonicum. Mol Microbiol (in press)

  • Bedzyk LA, Escudero KW, Gill RE, Griffin KJ, Frerman FE (1993) Cloning, sequencing and expression of the genes encoding subunits ofParacoccus denitrificans electron transfer flavoprotein. J Biol Chem 268:20211–20217

    PubMed  Google Scholar 

  • Bergersen FJ, Turner GL (1990) Bacteriods from soybean root nodules: accumulation of poly-β-hydroxybutyrate during supply of malate and succinate in relation to nitrogen fixation in flow-chamber reactions. Proc R Soc Lond [Biol] 240:39–59

    Google Scholar 

  • Black PN, DiRusso CC (1994) Molecular and biochemical analysis of fatty acid transport, metabolism, and gene regulation inEscherichia coli. Biochim Biophys Acta 1210:123–145

    PubMed  Google Scholar 

  • Brushi M, Guerlesquin F (1988) Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 54:155–176

    Google Scholar 

  • Chen D, Swenson RP (1994) Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein. J Biol Chem 269:32120–32130

    PubMed  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (ed) Biological nitrogen fixation. Routledge, Chapman & Hall, New York, pp 763–834

    Google Scholar 

  • Dusha I, Kovalenko S, Banfalvi Z, Kondorosi A (1987)Rhizobium meliloti insertion element ISRm2 and its use for identification of thefixX gene. J Bacteriol 169:1403–1409

    PubMed  Google Scholar 

  • Earl CD, Ronson CW, Ausubel FM (1987) Genetic and structural analysis of theRhizobium meliloti fixA, fixB, fixC, andfixX genes. J Bacteriol 169:1127–1136

    PubMed  Google Scholar 

  • Eichler K, Bourgis F, Buchet A, Kleber HP, Mandrand-Berthelot MA (1994) Molecular characterization of thecai operon necessary for carnitine metabolism inEscherichia coli. Mol Microbiol 13:775–786

    PubMed  Google Scholar 

  • Eichler K, Buchet A, Bourgis F, Kleber HP, Mandrand-Berthelot MA (1995) Thefix Escherichia coli region contains four genes related to carnitine metabolism. J Basic Microbiol 35:217–227

    PubMed  Google Scholar 

  • Evans D, Jones R, Woodley P, Robson R (1988) Further analysis of nitrogen fixation (nif) genes inAzotobacter chroococcum: identification and expression inKlebsiella pneumoniae ofnifS, nifV, nifM, andnifB genes and localization ofnifE/N-, nifU-, nifA-andfixABC-like genes. J Gen Microbiol 134:931–942

    PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    PubMed  Google Scholar 

  • Finocchiaro G, Ito M, Ikeda Y, Tanaka K (1988) Molecular cloning and nucleotide sequence of cDNAs encoding the α-subunit of human electron transfer flavoprotein. J Biol Chem 263:15773–15780

    PubMed  Google Scholar 

  • Finocchiaro G, Colombo I, Garavaglia B, Gellera C, Valdemari G, Garbuglio N, Didonato S (1993) cDNA cloning and mitochondrial import of the β-subunit of the human electron-transfer flavoprotein. Eur J Biochem 213:1003–1008

    PubMed  Google Scholar 

  • Fischer H-M (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    PubMed  Google Scholar 

  • Fogher C, Dusha I, Barbot P, Elmerich C (1985) Heterologous hybridization ofAzospirillum DNA toRhizobium nod andfix genes. FEMS Microbiol Lett 30:245–249

    Google Scholar 

  • Frisell WR, MacKenzie CG (1962) Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase. J Biol Chem 237:94–98

    PubMed  Google Scholar 

  • Fuhrmann M, Fischer H-M, Hennecke H (1985) Mapping ofRhiozobium japonicum nifB-, fixBC-, andfixA-like genes and identification of thefixA promoter. Mol Gen Genet 199:315–332

    Google Scholar 

  • Galimand M, Perroud B, Delorme F, Paquelin A, Vieille C, Bozouklian H, Elmerich C (1989) Identification of DNA regions homologous to nitrogen fixation genesnifE, nifUS andfixABC inAzospirillum brasiliense Sp7. J Gen Microbiol 135:1047–1059

    PubMed  Google Scholar 

  • Goodman SI, Axtell KM, Bindoff LA, Beard SE, Gill RE, Frerman FE (1994) Molecular cloning and expression of a cDNA encoding human electron transfer flavoprotein-ubiquinone oxidoreductase. Eur J Biochem 219:277–286

    PubMed  Google Scholar 

  • Grönger P, Manian S, Reiländer H, O'Connel M, Priefer UB, Pühler A (1987) Organization and partial sequence of a DNA region of theRhizobium leguminosarum symbiotic plasmid containing the genesfixABC, nifA, nifB and a novel open reading frame. Nucleic Acids Res 15:31–49

    PubMed  Google Scholar 

  • Gubler M (1989) Fine-tuning ofnif andfix gene expression by upstream activator sequences inBradyrhizobium japonicum. Mol Microbiol 3:149–159

    PubMed  Google Scholar 

  • Gubler M, Hennecke H (1986)fixA, B andC genes are essential for symbiotic and free-living, microaerobic nitrogen fixation. FEBS Lett 200:186–192

    Google Scholar 

  • Gubler M, Hennecke H (1988) Regulation of thefixA gene andfixBC operon inBradyrhizobium japonicum. J Bacteriol 170: 1205–1214

    PubMed  Google Scholar 

  • Gubler M, Zürcher T, Hennecke H (1989) TheBradyrhizobium japonicum fixBCX operon: identification offixX, and a 5′ mRNA region affecting the level of thefixBCX transcript. Mol Microbiol 3:141–148

    PubMed  Google Scholar 

  • Hauge JG, Crane FL, Beinert H (1956) On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. J Biol Chem 219:727–733

    PubMed  Google Scholar 

  • Husain M, Steenkamp DJ (1985) Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase fromParacoccus denitrificans. J Bacteriol 163: 709–715

    PubMed  Google Scholar 

  • Iismaa SE, Watson JM (1987) A gene upstream of theRhizobium trifolii nifA gene encodes a ferredoxin-like protein. Nucleic Acids Res 15:318

    Google Scholar 

  • Ikeda Y, Tanaka K (1983a) Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. J Biol Chem 258:1077–1085

    PubMed  Google Scholar 

  • Ikeda Y, Tanaka K (1983b) Purification and properties of 2-methyl branched chain acyl-CoA dehydrogenase, an enzyme involved in the isoleucine and valine metabolism, from rat liver mitochondria. J Biol Chem 258:9477–9478

    PubMed  Google Scholar 

  • Kaminski PA, Norel F, Desnoues N, Kush A, Salzano G, Elmerich C (1988) Characterization of thefixABC region ofAzorhizobium caulinodans ORS571 and identification of a new nitrogen fixation gene. Mol Gen Genet 214:496–502

    PubMed  Google Scholar 

  • Kasprazak AA, Steenkamp DJ (1983) Localization of the major dehydrogenases in two methylotrophs by radiochemical labelling. J Bacteriol 156:348–353

    PubMed  Google Scholar 

  • Kündig C, Hennecke H, Göttfert M (1993) Correlated physical and genetic map of theBradyrhizobium japonicum 110 genome. J Bacteriol 175:613–622

    PubMed  Google Scholar 

  • Leinich AC, Goodman SI (1986) The purification and characterization of glutaryl-CoA dehydrogenase from porcine and human liver. J Biol Chem 261:4090–4096

    PubMed  Google Scholar 

  • Loferer H, Bott M, Hennecke H (1993)Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochromeaa 3 and development of symbiosis. EMBO J 12:3373–3383

    PubMed  Google Scholar 

  • McDermott TR, Griffith SM, Vance CP, Graham PH (1989) Carbon metabolism inBradyrhizobium japonicum bacteroids. FEMS Microbiol Rev 63:327–340

    Google Scholar 

  • McKie JH, Douglas KT (1991) Evidence for gene duplication forming similar binding folds for NAD(P)H and FAD in pyridine nucleotide-dependent flavoenzymes. FEBS Lett 279:5–8

    PubMed  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    PubMed  Google Scholar 

  • Michiels J, Vanderleyden J (1993) Cloning and sequence of theRhizobium leguminosarum biovarphaseoli fixA gene. Biochim Biophys Acta 1114:232–233

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26:101–106

    PubMed  Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex inBradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90:3309–3313

    PubMed  Google Scholar 

  • Pühler A, Aguilar MO, Hynes M, Müller P, Klipp W, Priefer U, Simon R, Weber G (1984) Advances in the genetics of free-living and symbiotic nitrogen fixing bacteria. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff, Dordrecht, pp 609–619

    Google Scholar 

  • Regensburger B, Hennecke H (1983) RNA polymerase fromRhizobium japonicum. Arch Microbiol 135:103–109

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 83:765–773

    Google Scholar 

  • Schinzawa K, Inagaki T, Ohishi H, Ichihara C, Tsukagoshi N, Ukada S, Yagi K (1988) Molecular cloning of a cDNA for the α-subunit of rat liver electron transfer flavoprotein. Biochem Biophys Res Commun 155:300–304

    PubMed  Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V, Ausubel FM (1984) ARhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043

    PubMed  Google Scholar 

  • Thöny-Meyer L, Preisig O, Zufferey R, Hennecke H (1995) The role of a microaerobically inducedcb-type cytochrome oxidase in symbiotic nitrogen fixation. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: Fundamentals and applications. Kluwer, Dordrecht, pp 383–388

    Google Scholar 

  • Tsai MH, Saier MH (1995) Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-α and ETF-β. Res Microbiol 146:397–404

    PubMed  Google Scholar 

  • Watmough NJ, Kiss J, Frerman FE (1992) Structural and redox relationships betweenParacoccus denitrificans, porcine and human electron-transferring flavoproteins. Eur J Biochem 205:1089–1097

    PubMed  Google Scholar 

  • Weidenhaupt M (1996) In the search for new NifA-dependent genes and their function inBradyrhizobium japonicum. PhD thesis No. 11411, Federal Institute of Technology, Zürich

  • Yanagi M, Yanmasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120

    PubMed  Google Scholar 

  • Young JPW, Downer HL, Eardly BD (1991) Phylogeny of the phototrophicRhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277

    PubMed  Google Scholar 

  • Youngleson JS, Jones DT, Woods DR (1989) Homology between hydroxybutyryl and hydroxyacyl coenzyme A dehydrogenase enzymes fromClostridium acetobutylicum fermentation and vertebrate fatty acid β-oxidation. J Bacteriol 171:6800–6807

    PubMed  Google Scholar 

  • Yura T, Mori H, Hagai H, Nagat T, Isihama A, Fujita N, Isono K, Mizobushi K, Nakata A (1992) Systematic sequencing of theEscherichia coli genome: analysis of the 0–2.4 min region. Nucleic Acids Res 20:3305–3308

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidenhaupt, M., Rossi, P., Beck, C. et al. Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes:fixA, fixB andetfS, etfL . Arch. Microbiol. 165, 169–178 (1996). https://doi.org/10.1007/BF01692858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01692858

Key words

Navigation