Skip to main content
Log in

Purification and characterization of phenylacetate-coenzyme A ligase from a denitrifying Pseudomonas sp., an enzyme involved in the anaerobic degradation of phenylacetate

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The enzyme catalysing the first step in the anaerobic degradation pathway of phenylacetate was purified from a denitrifying Pseudomonas strain KB 740. It catalyses the reaction phenylacetate+CoA+ATP → phenylacetyl-CoA+AMP+PPi and requires Mg2+. Phenylacetate-CoA ligase (AMP forming) was found in cells grown anaerobically with phenylacetate and nitrate. Maximal specific enzyme activity was 0.048 μmol min-1 x mg-1 protein in the mid-exponential growth phase. After 640-fold purification with 18% yield, a specific activity of 24.4 μmol min-1 mg-1 protein was achieved. The enzyme is a single polypeptide with Mr of 52 ±2 kDa. The purified enzyme shows high specificity towards the aromatic inducer substrate phenylacetate and uses ATP preferentially; Mn2+ can substitute for Mg2+. The apparent K m values for phenylacetate, CoA, and ATP are 60, 150, and 290 μM, respectively. The soluble enzyme has an optimum pH of 8.5, is insensitive to oxygen, but is rather labile and requires the presence of glycerol and/or phenylacetate for stabilization. The N-terminal amino acid sequence showed no homology to other reported CoA-ligases. The expression of the enzye was studied by immunodetection. It is present in cells grown anaerobically with phenylacetate, but not with mandelate, phenylglyoxylate, benzoate; small amounts were detected in cells grown aerobically with phenylacetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenschmidt U, Fuchs G (1992) Novel aerobic 2-aminobenzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the gene on a 8-kbp plasmid, and cloning and sequencing of the gene from a denitrifying Pseudomonas sp. Eur J Biochem 205: 721–727

    Article  CAS  PubMed  Google Scholar 

  • Altenschmidt U, Oswald B, Fuchs G (1991) Purification and characterization of benzoate-CoA ligase and 2-aminobenzoate-CoA ligases from a denitrifying Pseudomonas sp. J Bacteriol 173: 5494–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146: 177–180

    Article  CAS  Google Scholar 

  • Balba MT, Evans WC (1979) The methanogenic fermentation of omega-phenylalkane carboxylic acids. Biochem Soc Trans 7: 403–405

    Article  CAS  PubMed  Google Scholar 

  • Biegert T, Altenschmidt U, Eckerskorn C, Fuchs G (1993) Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoate-CoA ligase from a denitrifying Pseudomonas species. Eur J Biochem 213: 555–561

    Article  CAS  PubMed  Google Scholar 

  • Braun K, Gibson DT (1984) Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol 48: 102–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KH, Liang PH, Beck W, Scholten JD, Dunaway-Mariano D (1992) Isolation and characterization of the 3 polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry 31: 5605–5610

    Article  CAS  PubMed  Google Scholar 

  • Dagley S (1986) Biochemistry of aromatic hydrocarbon degradation in Pseudomonas. In: Sokatch IR (ed) The bacteria, vol 10. Academic Press, New York, pp 527–555

    Google Scholar 

  • Dangel W, Brackmann R, Lack A, Mohamed M, Koch J, Oswald B, Seyfried B, Tschech A, Fuchs G (1991) Differential expression of enzyme activities initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA. Arch Microbiol 155: 256–262

    Article  CAS  Google Scholar 

  • D'Ari L, Barker HA (1985) p-Cresol formation by cell-free extracts of Clostridium difficile. Arch Microbiol 143: 311–312

    Article  CAS  PubMed  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Tones KM (1986) Data for biochemical research, 3rd edn. Oxford Science Publications, Oxford, pp 316–397

    Google Scholar 

  • Decker K (1959) Die aktivierte Essigsäure. Enke, Stuttgart

    Google Scholar 

  • Eckerskorn C, Mewes W, Goretzki H, Lottspeich F (1988) A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. Eur J Biochem 176: 509–519

    Article  CAS  PubMed  Google Scholar 

  • Elder DJE, Morgan P, Kelly DJ (1992) Anaerobic degradation of trans-cinnamate and ω-phenylalkane carboxylic acids by the photosynthetic bacterium Rhodopseudomonas palustris: evidence for a β-oxidation mechanism. Arch Microbiol 157: 148–154

    CAS  PubMed  Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42: 289–317

    Article  CAS  PubMed  Google Scholar 

  • Fogg GC, Gibson J (1990) 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris. Abstr Annu Meet Am Soc Microbiol, p 242

  • Geissler JF, Harwood CS, Gibson J (1988) Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 170: 1709–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianfreda L, Searfi MR (1991) Enzyme stabilization: state of the art. Mol Cell Biochem 100: 97–128

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • Gibson KJ, Gibson J (1992) Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl Environm Microbiol 58: 696–698

    CAS  Google Scholar 

  • Grbic-Galic D (1985) Fermentative and oxidative transformation of ferulate by a facultatively anaerobic bacterium isolated from sewage sludge. Appl Environ Microbiol 50: 1052–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross GG (1981) Phenolic acids. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 7. Academic Press, New York, pp 301–315

    Google Scholar 

  • Gross GG, Mansell RH, Zenk MH (1975) Hydroxycinnamate: CoA ligase from lignifying tissue of higher plants. Some properties and taxonomic distribution. Biochem Physiol Pflanz 168: 41–51

    Article  CAS  Google Scholar 

  • Hancock K, Tsang VCW (1983) India ink staining of proteins on nitrocellulose paper. Anal Biochem 133: 157–162

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS, Gibson J (1986) Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol 165: 504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healy JB, Young LY, Reinhard M (1980) Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl Environ Microbiol 39: 436–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heising S, Brune A, Schink B (1991) Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium. FEMS Microbiol Lett 84: 267–272

    Article  CAS  Google Scholar 

  • Hutber GN, Ribbons DW (1983) Involvement of coenzyme A esters in metabolism of benzoate and cyclohexanecarboxylate by Rhodopseudomonas palustris. J Gen Microbiol 129: 2413–2420

    CAS  Google Scholar 

  • Kim M-K, Harwood CS (1991) Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol Lett 83: 199–204

    CAS  Google Scholar 

  • Kim YS, Chae HZ (1991) Purification and properties of malonyl-CoA synthetase from Rhizobium japonicum. Biochem J 273: 511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knobloch K-H, Hahlbrock K (1977) 4-Coumarate: CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm. Partial purification, substrate specificity, and further properties. Arch Biochem Biophys 184: 237–248

    Article  CAS  PubMed  Google Scholar 

  • Koch J, Eisenreich W, Bacher A, Fuchs G (1993) Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 211: 649–661

    Article  CAS  PubMed  Google Scholar 

  • Koch J, Fuchs G (1992) Enzymatic reduction of benzoyl-CoA to alicyclic compounds, a key reaction in anaerobic aromatic metabolism. Eur J Biochem: 195–202

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  • Lindl T, Kreuzaler F, Hahlbrock K (1973) Synthesis of p-coumaroyl coenzyme A with a partially purified p-coumarate-CoA ligase from cell suspension cultures of soybean (Glycine max). Biochim Biophys Acta 302: 457–464

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrock J (ed) (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87: 206–210

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Blanco H, Reglero A, Rodriguez-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265: 7084–7090

    CAS  PubMed  Google Scholar 

  • Mohamed M, Seyfried B, Tschech A, Fuchs G (1993) Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-CoA and CO2 in denitrifying Pseudomonas species: evidence for an α-oxidation mechanism. Arch Microbiol 159: 570–580

    Google Scholar 

  • Morrissey JH (1981) Silverstain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117: 307–310

    Article  CAS  PubMed  Google Scholar 

  • Nilsson BO, Svolander PC, Larsson A (1987) Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to sepharose beads or nitrocellulose paper strips. J Immunol. Methods 99: 67–75

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Maruyama Y (1988) Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates. J Bacteriol 170: 2501–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Person GG, Wall JD, Emerich DW (1990) Purification and properties of acetyl-CoA synthetase from Bradyrhizobium japonicum bacteroids. Biochem J 267: 179–183

    Article  Google Scholar 

  • Rhodes MJC, Wooltorton LSC (1975) The p-coumaroyl CoA ligase of potato tubers. Phytochemistry 14: 2161–2164

    Article  CAS  Google Scholar 

  • Rudolphi A, Tschech A, Fuchs G (1991) Anaerobic degradation of cresols by denitrifying bacteria. Arch Microbiol 155: 238–248

    Article  CAS  PubMed  Google Scholar 

  • Schnell S, Schink B (1991) Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch Microbiol 155: 183–190

    Article  CAS  Google Scholar 

  • Sembiring T, Winter J (1989) Anaerobic degradation of phenylacetic acid by mixed and pure cultures. Appl Microbiol Biotechnol 31: 84–88

    CAS  Google Scholar 

  • Seyfried B, Tschech A, Fuchs G (1991) Anaerobic degradation of phenylacetate and 4-hydroxyphenylacetate by denitrifying bacteria. Arch Microbiol 155: 249–255

    Article  CAS  Google Scholar 

  • Spoelstra SF (1978) Degradation of tyrosine in anaerobically stored piggery wastes and in pig feces. Appl Environ Microbiol 36: 631–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subba-Rao PV, Francis NLM, Metcalfe DD (1983) An avidinbiotin micro ELISA for rapid measurement of total and allergenspecific human IgE. J Immunol Methods 57: 71–85

    Article  CAS  PubMed  Google Scholar 

  • Utkin IB, Yakimov MM, Matveea LN, Kozlyak EI, Rogozhin IS, Solomon ZG, Bezborodov AM (1991) Degradation of styrene and ethyl benzene by Pseudomonas species Y2. FEMS Microbiol Lett 77: 237–242

    Article  CAS  Google Scholar 

  • Walton E, Butt VS (1971) The demonstration of cinnamoyl-CoA synthesis activity in leaf extracts. Phytochemistry 10: 295–304

    Article  CAS  Google Scholar 

  • Ward LA, Johnson KA, Robinson JM, Yokoyama MT (1987) Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). Appl Environ Microbiol 53: 189–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate-or sulfur-reducing bacteria. In: Krieg NR, Holt IG (eds) Bergey's manual of systematic bacteriology, vol 1, 9th edn. Williams & Wilkins, Baltimore London, pp 663–679

    Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134: 286–294

    Article  CAS  Google Scholar 

  • Yokoyama MT, Carlson JR (1981) Production of skatole and paracresol by a rumen Lactobacillus sp. Appl Environ Microbiol 41: 71–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zenk MH (1971) Metabolism of prearomatic and aromatic compounds in plants. In: Wagner H, Hörhammer L (eds) Pharmacognosy and phytochemistry. Springer, Berlin Heidelberg New York, pp 314–346

    Chapter  Google Scholar 

  • Zenk MH, Ulbrich B, Brusse J, Stöckigt J (1980) Procedure for the enzymatic synthesis and isolation of cinnamoyl-CoA thioesters using a bacterial system. Anal Biochem 101: 182–187

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kung SD, Dube SK (1990) Nucleotide sequence of rice 4-coumarate: CoA ligase gene, 4-CL. 1. Nucleic Acids Res 18: 6144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler K, Buder R, Winter J, Fuchs G (1989) Activation of aromatic acids and aerobic 2-aminobenzoate metabolism in a denitrifying Pseudomonas strain. Arch Microbiol 151: 171–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, M.ES., Fuchs, G. Purification and characterization of phenylacetate-coenzyme A ligase from a denitrifying Pseudomonas sp., an enzyme involved in the anaerobic degradation of phenylacetate. Arch. Microbiol. 159, 554–562 (1993). https://doi.org/10.1007/BF00249035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249035

Key words

Navigation