Skip to main content
Log in

Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

2,4-Dichlorophenoxyacetate (2,4-D) in Alcaligenes eutrophus JMP134 (pJP4) is degraded via 2-chloromaleylacetate as an intermediate. The latter compound was found to be reduced by NADH in a maleylacetate reductase catalyzed reaction. Maleylacetate and chloride were formed as products of 2-chloromaleylacetate reduction, the former being funnelled into the 3-oxoadipate pathway by a second reductive step. There was no indication for an involvement of a pJP4-encoded enzyme in either the reduction or the dechlorination reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetate

References

  • Bollag J-M, Briggs GG, Dawson JE, Alexander M (1968) 2,4-D Metabolism. Enzymatic degradation of chlorocatechols. J Agric Food Chem 16: 829–833

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Google Scholar 

  • Chapman PJ (1979) Degradation mechanisms. In: Bourquin AW, Pritchard PH (eds) Proceedings of the workshop: Microbial degradation of pollutants in marine environments. U.S. Environmental Protection Agency, Gulf Breeze, Florida, pp 28–66

    Google Scholar 

  • Chapman PJ, Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: Alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol 125: 985–998

    Google Scholar 

  • Chatterjee DK, Kellogg ST, Hamada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J Bacteriol 146: 639–646

    Google Scholar 

  • Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol Rev 55: 59–79

    Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161: 85–90

    Google Scholar 

  • Dorn E, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174: 85–94

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99: 61–70

    Google Scholar 

  • Duxbury JM, Tiedje JM, Alexander M, Dawson JE (1970) 2,4-D metabolism: Enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem 18: 199–201

    Google Scholar 

  • Engesser KH, Fischer P (1991) Degradation of haloaromatic compounds. In: Betts WB (ed) Biodegradation: natural and synthetic materials. Springer, Berlin Heidelberg New York, pp 15–54

    Google Scholar 

  • Evans WC, Smith BSW, Moss P, Fernley HN (1971a) Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J 122: 509–517

    Google Scholar 

  • Evans WC, Smith BSW, Fernley HN, Davies JI (1971b) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122: 543–551

    Google Scholar 

  • Friedrich B, Meyer M, Schlegel HG (1983) Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 134: 92–97

    Google Scholar 

  • Gorlatov SN, Maltseva OV, Shevchenko VI, Golovleva LA (1989) Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Mikrobiologiya 58: 802–806; Microbiology 58: 647–651

    Google Scholar 

  • Häggblom M (1990) Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol 30: 115–141

    Google Scholar 

  • Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54: 294–301

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss H-J (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37: 421–428

    Google Scholar 

  • Kaschabek SR (1990) Untersuchungen zur Dehalogenierung von Chloromaleylacetaten in Pseudomonas sp. Stamm B13. Diplomarbeit, Bergische Universität — Gesamthochschule Wuppertal

  • Kaschabek S, Reineke W (1992) Maleylacetate reductase of Pseudomonas sp. strain B13: Purification and function in the degradation of dichloroaromatic compounds. Bioengineering 8: 40, V217

    Google Scholar 

  • Kuhm AE, Schlömann M, Knackmuss H-J, Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem J 266: 877–883

    Google Scholar 

  • Kukor JJ, Olsen RH, Siak J-S (1989) Recruitment of a chromosomally encoded maleylacetate reductase for degradation of 2,4-dichlorophenoxyacetic acid by plasmid pJP4. J Bacteriol 171: 3385–3390

    Google Scholar 

  • Neilson AH (1990) The biodegradation of halogenated organic compounds. J Appl Bacteriol 69: 445–470

    Google Scholar 

  • Pemberton JM, Corney B, Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North Holland Biomedical Press, Amsterdam, pp 287–299

    Google Scholar 

  • Pieper DH, Reineke W, Engesser K-H, Knackmuss H-J (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol 150: 95–102

    Google Scholar 

  • Pieper DH, Kuhm AE, Stadler-Fritzsche K, Fischer P, Knackmuss H-J (1991) Metabolization of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP134. Arch Microbiol 156: 218–222

    Google Scholar 

  • Reineke W (1984) Microbial degradation of halogenated aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York Basel, pp 319–360

    Google Scholar 

  • Reineke W, Knackmuss H-J (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42: 263–287

    Google Scholar 

  • Sander P, Wittich R-M, Fortnagel P, Wilkes H, Francke W (1991) Degradation of 1,2,4-trichloro-and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57: 1430–1440

    Google Scholar 

  • Schindowski A, Wittich R-M, Fortnagel P (1991) Catabolism of 3,5-dichlorosalicylate by Pseudomonas species strain JWS. FEMS Microbiol Lett 84: 63–70

    Google Scholar 

  • Schlömann M, Pieper DH, Knackmuss H-J (1990a) Enzymes of haloaromatics degradation: variations of Alcaligenes on a theme by Pseudomonas. In: Silver S, Chakrabarty AM, Iglewski B Kaplan S (eds) Pseudomonas. Biotransformations, pathogenesis, and evolving biotechnology. American Society for Microbiology, Washington DC, pp 185–196

    Google Scholar 

  • Schlömann M, Schmidt E, Knackmuss H-J (1990b) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol 172: 5112–5118

    Google Scholar 

  • Schlömann M, Fischer P, Schmidt E, Knackmuss H-J (1990c) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol 172: 5119–5129

    Google Scholar 

  • Schmidt E, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192: 339–347

    Google Scholar 

  • Schwien U, Schmidt E, Knackmuss H-J, Reineke W (1988) Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13: fate of 3,5-dichlorocatechol. Arch Microbiol 150: 78–84

    Google Scholar 

  • Spain JC, Nishino SF (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53: 1010–1019

    Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17: 1021–1026

    Google Scholar 

  • Van derMeer JR, vanNeerven ARW, deVries EJ, deVos WM, Zehnder AJB (1991a) Cloning and characterization of plasmidencoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173: 6–15

    Google Scholar 

  • Van derMeer JR, Eggen RIL, Zehnder AJB, deVos WM (1991b) Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: Evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173: 2425–2434

    Google Scholar 

  • Vollmer M, Schlömann M (1992) Enzymology of chloride elimination from chloromaleylacetate by Alcaligenes eutrophus JMP 134. Bioengineering 8: 64, P318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmer, M.D., Stadler-Fritzsche, K. & Schlömann, M. Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134. Arch. Microbiol. 159, 182–188 (1993). https://doi.org/10.1007/BF00250280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250280

Key words

Navigation