Skip to main content
Log in

The electron transport system of Alcaligenes eutrophus H16

I. Spectroscopic and thermodynamic properties

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The electron transport system of autotrophically grown Alcaligenes eutrophus H16 has been investigated by spectroscopic and thermodynamic approaches. The results have been interpreted as evidence that isolated membranes contain a branched respiratory chain composed of three c-type haems (E m,7=+160 mV, + 170 mV, and + 335 mV), five b-type haems (E m,7=+ 5 mV, + 75 mV, + 205 mV, + 300 mV, and + 405 mV), two (possibly three) a-type haems [E m,7= + 255 mV, + 350 mV, (+ 420 mV)], and nne d-type haem. EPR-analysis of the signals at g=1.93, g=2.02, and g=1.90 revealed the presence of iron-sulphur centres diagnostic of complexes I (NADH dehydrogenase), II (succinate dehydrogenase), and III (ubiquinol/cytochrome c oxidoreductase). The low potential b haems (+ 5 mV and + 75 mV) plus the Rieske protein (g=1.90, E m,7=+ 280 mV), thought to be part of an orthodox bc 1 complex, were present in low amounts as compared to their counterparts in membranes from Paracoccus denitrificans.

CO-difference spectra in the presence of either succinate, NADH, hydrogen, ascorbate/TMPD, and/or dithionite as reductants, suggested the existance of four different oxidases composed by bo-, cb-, a-, and d-type haems.

It is concluded that in contrast to other chemolithotrophes, e.g. P. denitrificans, autotrophic growth of Alcaligenes eutrophus utilizes a respiratory system in which the bc 1 complex containing pathway is only partially involved in electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cytochrome c-551, number:

wavelength in nm

Cytochrome c 270, number:

mid-point potential in mV

E m,7 :

mid-point potential of an oxidation-reduction couple at pH 7.0

KP:

buffer, potassium phosphate-buffer

OD:

optical density at 436 nm, 1 cm light path

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

References

  • Artzatbanov V, Müller M, Azzi A (1987) Isolation and partial characterization of the cytochrome c oxidase of Micrococcus luteus (lysodeikticus). Arch Biochem Biophys 257: 476–480

    Google Scholar 

  • Banerjee AK, Schlegel HG (1966) Zur Rolle des Heffextraktes während des chemolithoautotrophen Wachstums von Micrococcus denitrificans. Arch Mikrobiol 53: 132–153

    Google Scholar 

  • Beatrice MC, Chappell JB (1979) The respiratory chain of Alcaligenes eutrophus H16. Biochem J 178: 15–22

    Google Scholar 

  • Beinert H, Ackrell BAC, Vinogradov AD, Keraney E, Singer TP (1977) Interrelations of reconstitution activity, reactions with electron acceptors, and iron-sulphur centers in succinate dehydrogenase. Arch Biochem Biophys 182: 95–106

    Google Scholar 

  • Bernhardt U, Probst I, Schlegel HG (1974) The cytochromes of some hydrogen bacteria. Arch Mikrobiol 95: 29–37

    Google Scholar 

  • Bosma G (1989) Growth-condition-dependent synthesis of electron transfer components in Paracoccus denitrificans. Thesis, Vrije Universiteit Amsterdam

  • Butler WL (1979) Fourth derivative spectra. Methods Enzymol 56: 501–515

    Google Scholar 

  • Chance B (1957) Techniques for the assay of the respiratory enzymes. Methods Enzymol 4: 272–329

    Google Scholar 

  • Cramer WA, Crofts AR (1982) Electron and proton transport. In: Govindjee (ed) Photosynthesis. Energy conversion by plants and bacteria, vol. 1. Academic Press, London, pp. 387–467

    Google Scholar 

  • Dutton PL (1978) Redox potentiometry: Determination of midpoint potentials of oxidation-reduction components of biological electron transfer systems. Methods Enzymol 54: 411–435

    Google Scholar 

  • Dutton PL, Wilson DF, Lee C-P (1970) Oxidation-reduction potentials of cytochromes in mitochondria. Biochemistry 9: 5077–5082

    Google Scholar 

  • Gelder BF van (1966) On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and a 3. Biochem Biophys Acta 118: 36–46

    Google Scholar 

  • Haddock BA, Downie JA, Garland PB (1976) Kinetic characterization of the membrane-bound cytochromes of Escherichia coli grown under a variety of conditions by using a stopped flow dual wavelength spectrophotometer. Biochem J 154: 285–294

    Google Scholar 

  • Henry MF, Vignais PM (1979) Induction by cyanide of cytochrome d in the plasma membrane of Paracoccus denitrificans FEBS Lett 100: 41–45

    Google Scholar 

  • Jones CW (1988) Membrane-associated energy conservation in bacteria: a general introduction. In: Anthony C (ed) Bacterial energy transduction. Academic Press, London, pp. 1–82

    Google Scholar 

  • Kömen R, Zannoni D, Schmidt K (1991). The electron transport system of Alcaligenes eutrophus H16. II. Respiratory activities and effect of specific inhibitors. Arch Microbiol 155 (in press)

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Malkin R, Bearden AJ (1978) Membrane bound iron-sulphur centres in photosynthetic systems. Biochim Biophys Acta 505: 147–181

    Google Scholar 

  • Onishi T, Salerno JC (1982) Iron-sulfur clusters in the mitochondrial electron-transport chain. In: Spiro TG (ed) Iron-sulfur proteins, vol 4. John Wiley and Sons, Inc. pp 287–327

  • Onishi T, Salerno JC, Winter DB, Lim J, Yu CA, Yu L, King TE (1976) Thermodynamic and EPR characteristics of two ferredoxin-type iron-sulphur centres in succinate-ubiquinone reductase segment of respiratory chain. J Biol Chem 251: 2094–2104

    Google Scholar 

  • Poole RK (1988) Bacterial cytochrome oxidases. In: Anthony C (ed) Bacterial energy transduction. Academic Press, London, pp 231–291

    Google Scholar 

  • Poole RK, Ingledew WJ (1987) Pathways of electrons to oxygen. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger E (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. ASM, Washington, DC, pp 170–200

    Google Scholar 

  • Poole RK, Baines BS, Appleby CA (1986) Haemoprotein b-590 (Escherichia coli) a reducible catalase and peroxidase: Evidence for its close relationship to hydroperoxidase I and a ‘cytochrome a 1 b’ preparation. J Gen Microbiol 132: 1525–1539

    Google Scholar 

  • Prince RC, Ingledew WJ (1977) Thermodynamic resolution of the iron sulphur centres of the succinic dehydrogenase of Rhodopseudomonas sphaeroides. Arch Biochem Biophys 178: 303–307

    Google Scholar 

  • Probst I (1980) Respiration in hydrogen bacteria. In: Knowles CJ (ed) Diversity of bacterial respiratory systems, vol 2. CRC Press, Boca Raton, FL, pp 159–181

    Google Scholar 

  • Probst I, Schlegel HG (1976) Respiratory components and oxidase activities in Alcaligenes eutrophus. Biochim Biophys Acta 440: 412–428

    Google Scholar 

  • Puustinen A, Finel M, Virkki M, Wikström M (1989) Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett 249: 163–167

    Google Scholar 

  • Reid AG, Ingledew WJ (1979) Characterization and phenotypic control of the cytochrome content of Escherichia coli. Biochem J 182: 465–472

    Google Scholar 

  • Rieske JS, Zang WS, Hansen RE (1964) Studies on the electron transfer system. Distribution of iron and of the component giving an electron paramagnetic resonance signal at g=1.90 in subfractions of complex III. J Biol Chem 239: 3029–3036

    Google Scholar 

  • Salerno JC, Bolgiano B, Poole RK, Gennis RB, Ingledew WJ (1990) Heme-copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli. J Biol Chem 265: 4364–4368

    Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien. Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38: 209–222

    Google Scholar 

  • Trumpower BL (1990) Cytochrome bc 1 complexes of microorganisms. Microbiol Rev 54: 101–129

    Google Scholar 

  • Vrij W de, Azzi A, Konings WN (1983) Structural and functional properties of cytochrome c oxidase from Bacillus subtilis W23. Eur J Biochem 131: 97–103

    Google Scholar 

  • Yamanaka T, Fukumori Y, Yamazaki T, Kato H, Nakayama K (1985) A comparative survey of several bacterial aa 3-type cytochrome c oxidases. J Inorg Biochem 23: 273–277

    Google Scholar 

  • Zannoni D (1989) The respiratory chain of pathogenic pseudomonads. Biochim Biophys Acta 975: 299–316

    Google Scholar 

  • Zannoni D, Baccarini-Melandri A (1980) Respiratory electron flow in facultative photosynthetic bacteria. In: Knowles CJ (ed) Diversity of bacterial respiratory systems, vol 2. CRC Press, Boca Raton, FL, pp 183–202

    Google Scholar 

  • Zannoni D, Ingledew WJ (1984) A comparative survey of the iron sulphur centres in the cytoplasmic membranes of Pseudomonas cichorii and Pseudomonas aptata. J Gen Microbiol 130: 1107–1111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kömen, R., Zannoni, D., Ingledew, W.J. et al. The electron transport system of Alcaligenes eutrophus H16. Arch. Microbiol. 155, 382–390 (1991). https://doi.org/10.1007/BF00243459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243459

Key words

Navigation