Skip to main content
Log in

Tetrameric structure and cellular location of catechol 2,3-dioxygenase

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Catechol 2,3-dioxygenase from the meta-cleavage pathway encoded on the TOL plasmid of Pseudomonas putida (pWWO) was investigated by electron microscopy. Negatively stained samples of the purified catechol 2,3-dioxygenase revealed that the enzyme consists of four subunits arranged in a tetrahedral conformation. Monoclonal antibodies raised against catechol 2,3-dioxygenase showed highly specific reactions and were used to localize the enzyme in Escherichia coli (pAW31) and P. putida (pWWO), using the protein A-gold technique carried out as a post-embedding immunoelectron microscopy procedure. Our in situ labeling studies revealed a cytoplasmic location of the catechol 2,3-dioxygenase in both cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C23O :

Catechol 2,3-dioxygenase

3MB 3 :

Methylbenzoate

AK1 :

Anti-C23O-IgG-antibody

G :

Gold particle

References

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Chakrabarty AM (1976) Plasmids in Pseudomonas. Ann Rev Genet 10:7–30

    Google Scholar 

  • Ey PL, Prowse SJ, Jenkin CR (1978) Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunocytochem 15:429–436

    Google Scholar 

  • Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA, Timmis KN (1989) Characterization of five genes in the upper-pathway operon of TOL plasmid pWWO from Pseudomonas putida and identification of the gene products. J Bacteriol 171:5048–5555

    Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601

    Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophages T4. Nature 227:680–685

    Google Scholar 

  • Lünsdorf H, Spiess E (1986) A rapid method of preparing perforated supporting foils for the thin carbon films used in high resolution transmission electron microscopy. J Microsc 144:211–213

    Google Scholar 

  • Mackenzie MR, Warner NL, Mitchell GF (1978) The binding of murine immunoglobulins to staphylococcal protein A. J Immunol 120:1493–1496

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook (1982) Molecular cloning: a laboratory matual, Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • McClure NC, Fry JC, Weightman AJ (1991) Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit. Appl Environ Microbiol 57:366–373

    Google Scholar 

  • Nakai C, Hori K, Kazuko H, Kagamiyama H, Nakazawa T, Nozaki M (1983) Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J Biol Chem 258:2916–2922

    Google Scholar 

  • Nakanishi Y, Murakami S, Shinke R, Aoki K (1991) Induction, purification, and characterization of catechol 2,3-dioxygenase from aniline-assimilating Pseudomonas sp. FK-8-2. Agric Biol Chem 55:1281–1289

    Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (Pseudomonas). Methods Enzymol 17A:522–525

    Google Scholar 

  • Nozaki M (1979) Oxygenases and dioxygenases. Top Curr Chem 78:145–186

    Google Scholar 

  • Nozaki M, Kagamiyama H, Hayaishi O (1963) Metapyrocatechase. Purification, crystallization and some properties. Biochem Z 338:582–590

    Google Scholar 

  • Nozaki M, Ono K, Nakazawa T, Kotani S, Hayaishi O (1968) Metapyrocatechase. II. The role of iron and sulfhydryl groups. J Biol Chem 243:2682–2690

    Google Scholar 

  • Peters JH, Baumgarten H, Schulze M (1985) Monoklonale Antikörper: Herstellung und Charakterisierung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ramos JL, Wasserfallen A, Rose K, Timmis KN (1987) Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596

    Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–669

    Google Scholar 

  • Slot JW, Geuze HJ (1981) Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol 90:533–536

    Google Scholar 

  • Valentine, RC, Shapiro BM, Stadtman ER (1968) Regulation of glutamine synthetase XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7:2143–2152

    Google Scholar 

  • Wagner-Döbler I, Pipke R, Timmis KN, Dwyer DF (1992) Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl Environ Microbiol 58:1249–1258

    Google Scholar 

  • Wasserfallen A (1989) Etude biochemique et genétique de la specificitée de la catechol 2,3-dioxygenase de Pseudomonas putida, Université de Genève PhD thesis

  • Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, J., Eltis, L.D., Dwyer, D.F. et al. Tetrameric structure and cellular location of catechol 2,3-dioxygenase. Arch. Microbiol. 163, 65–69 (1995). https://doi.org/10.1007/BF00262205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262205

Key words

Navigation