Skip to main content
Log in

Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain

  • ARTICLE
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Aznalcóllar mining district is located on the eastern edge of the Iberian Pyrite Belt (IPB) containing complex geologic features that may help to understand the geology and metallogeny of the whole IPB. The district includes several ore deposits with total reserves of up to 130 Mt of massive sulphides. Average grades are approximately 3.6% Zn, 2% Pb, 0.4% Cu and 65 ppm Ag. Mined Cu-rich stockwork mineralizations consist of 30 Mt with an average grade of 0.6% Cu. Outcropping lithologies in the Aznalcóllar district include detrital and volcanic rocks of the three main stratigraphic units identified in the IPB: Phyllite-Quartzite Group (PQ), Volcano-Sedimentary Complex (VSC) and Culm Group. Two sequences can be distinguished within the VSC. The Southern sequence (SS) is mainly detritic and includes unusual features, such as basaltic pillow-lavas and shallow-water limestone levels, the latter located in its uppermost part. In contrast, the Aznalcóllar-Los Frailes sequence (AFS) contains abundant volcanics, related to the two main felsic volcanic episodies in the IPB. These distinct stratigraphic features each show a different palaegeographic evolution during Upper Devonian and Lower Carboniferous. Massive sulphides occur in association with black shales overlying the first felsic volcanic package (VA1) Palynomorph data obtained from this black shale horizon indicate a Strunian age for massive sulphides, and consequently an Upper Devonian age for the VA1 cycle. Field and textural relationships of volcanics suggest an evolution from a subaerial pyroclastic environment (VA1) to hydroclastic subvolcanic conditions for the VA2. This evolution can be related to compartmentalizing and increasing depth of the sedimentary basin, which may also be inferred from changes in the associated sediments, including black shales and massive sulphides. Despite changes in the character of volcanism, the same dacitic to rhyolitic composition is found in both pyroclastic and subvolcanic igneous series. The main igneous process controlling chemical variation of volcanics is fractional crystallization of plagioclase (+accessories). This process took place in shallow, sub-surface reservoirs giving rise to a compositional range of rocks that covers the total variation range of felsic rocks in the IPB. The Hercynian orogeny produced a complex structural evolution with a major, ductile deformation phase (F1), and development of folds that evolved to thrusts by short flank lamination. These thrusts caused tectonic repetition of massive and stockwork orebodies. In Aznalcóllar, some of the stockwork mineralization overthrusts massive sulphides. These structures are cut by large brittle overthrusts and by late wrench faults. The original geometric features of massive sulphide deposits correspond to large blankets with very variable thicknesses (10 to 100 m), systematically associated with stockworks. Footwall rock alteration exhibits a zonation, with an inner chloritic zone and a peripheral sericitic zone. Silicification, sulphidization and carbonatization processes also occur. Hydrothermal alteration is considered a multi-stage process, geochemically characterized by Fe, Mg and Co enrichment and intense leaching of alkalies and Ca. REE, Zr, Y and Hf are also mobilized in the inner chloritic zones. Three ore types occur, both in stockworks and massive sulphides, named pyritic, polymetallic and Cu-pyritic. Of these, Cu-pyritic is more common in stockworks, whereas polymetallic is prevalent in massive sulphides. Zoning of sulphide masses roughly sketches a typical VHMS pattern, but many alternating polymetallic and barren pyritic zones are probably related to tectonics. Although the paragenesis is complex, several successive mineral associations can be distinguished, namely: framboidal pyritic, high-temperature pyritic (300 °C), colloform pyritic, polymetallic and a late, Cu-rich high-temperature association (350 °C). Fluid inclusion data suggest that hydrothermal fluids changed continuously in temperature and salinity, both in time and space. Highest Th and salinities correspond to inner stockworks zones and later fluids. Statistic population analysis of fluid inclusion data points to three stages of hydrothermal activity, at low (<200 °C), intermediate (200–300 °C) and high temperatures (300–400 °C). 34S values in massive sulphides are lower than in stockwork mineralization suggesting a moderate bacterial activity, favoured by the euxinoid environment prevailing during black shale deposition. The intimate relation between massive sulphides and black shales points to an origin of massive sulphides by precipitation and replacement within black shale sediments. These would have acted both as physical and chemical barriers during sulphide deposition. Hydrothermal activity started during black shale deposition, triggered by a rise in thermal gradient due to the ascent of basic magmas. We suggest a three-stage genetic model: (1) low temperature, diffuse fluid flow, producing pyrite-bearing lenses and disseminations interbedded with black shales; locally, channelized high-T fluid flow occurs; (2) hydrothermal cyclic activity at a low to intermediate temperature, producing most of the pyritic and polymetallic ores, and (3) a late high-temperature phase, yielding Cu-rich and Bi-bearing mineralization, mainly in the stockwork zone.

Resumen

(translated by E. Pascual) El distrito minero de Aznalcóllar está situado en el extremo sureste de la Faja Pirítica Ibérica (IPB). Muestra rasgos geológicos complejos que pueden ayudar a comprender la geología y la metalogenia de toda la IPB. El distrito abarca varios depósitos minerales con reservas totales de más de 130 Mt de sulfuros masivos. Las leyes medias son de alrededor de 3,6% de Zn, 2% de Pb, 0,4% de Cu y 65 ppm de Ag. También se ha explotado una mineralización de stockwork con una ley de 0,6% de Cu y 30 Mt. Entre los materiales que afloran en el distrito de Aznalcóllar aparecen rocas volcánicas y detríticas de las tres unidades estratigráficas principales descritas en la IPB: grupo de filitas y cuarcitas (PQ), complejo vulcanosedimentario (VSC) y grupo Culm. En el VSC se pueden distinguir dos secuencias. La Secuencia Sur (SS) es principalmente detrítica, y como rasgo peculiar incluye pillow-lavas basálticas y niveles calizos de aguas someras, estas últimas hacia la parte superior de la secuencia. En cambio, la secuencia de Aznalcóllar-Los Frailes (AFS) contiene gran cantidad de rocas volcánicas, relacionadas con los dos principales episodios volcánicos en la IPB. Estos diferentes rasgos estratigráficos indican una distinta evolución paleogeográfica durante el Devónico superior y el Carbonífero inferior. Los sulfuros masivos aparecen asociados a pizarras negras depositadas sobre el primer volcanismo félsico (VA1) Los datos de palinomorfos obtenidos de este horizonte de pizarras negras indican una edad Estruniense para los sulfuros masivos, y en consecuencia una edad devónica superior para el primer ciclo volcánico VA1. Los datos de campo y texturales de las rocas volcánicas sugieren una evolución desde un ambiente de depósito subaéreo (VA1) hasta condiciones hidroclásticas subvolcánicas para el VA2. Esta evolución puede relacionarse con la compartimentación y profundización creciente de la cuenca sedimentaria, tal como lo sugieren también los cambios en los sedimentos asociados, incluidas las pizarras negras y los sulfuros masivos. Pese a los cambios en el tipo de vulcanismo, éste corresponde a una composición de dacítica a riolítica, tanto en las series piroclásticas como en las subvolcánicas. El principal proceso ígneo que controla la variación química de las rocas volcánicas es la cristalización fraccionada de plagioclasa (+accesorios). Este proceso tuvo lugar en reservorios subsuperficiales a poca profundidad, y dio lugar a un rango de composiciones que cubre el rango total de variación de la IPB. La orogenia hercínica produjo una evolución estructural compleja, con una fase mayor de deformación dúctil F1 en la que se produjeron pliegues que evolucionaron a cabalgamientos por laminación del flanco corto. Estos cabalgamientos produjeron repetición tectónica de las mineralizaciones masivas y de stockwork. En Aznalcóllar, parte de la mineralización de stockwork cabalga los sulfuros masivos. Las estructuras anteriores son cortadas por grandes cabalgamientos en régimen frágil y por fallas tardías de desgarre. Los rasgos originales de los depósitos de sulfuros masivos corresponden a mantos extensos con espesores variables (10 a 100 m), asociados sistemáticamente con stockworks. La alteración del muro de los depósitos muestra una zona clorítica interna y otra sericítica periférica. También tienen lugar procesos de silicificación, carbonatización y piritización. La alteración hidrotermal debe considerarse como un proceso multiestadio, que se caracteriza geoquímicamente por enriquecimiento en Fe, Mg y Co e intenso lixiviado de alcalinos y Ca. REE, Zr, Y y Hf también se movilizan en las aureolas cloríticas internas. Tanto en stockworks como en sulfuros masivos se distinguen tres tipos de mineralización, denominadas pirítica, polimetálica y pirítica rica en Cu. Esta última es más común en stockworks, en tanto que la polimetálica predomina en los sulfuros masivos. La zonación de las masas de sulfuros corresponde aproximadamente a un VHMS típico, pero muchas de las zonas alternantes piríticas y polimetálicas están probablemente relacionadas con la tectónica. Aunque la secuencia de cristalización es compleja, se pueden distinguir varias asociaciones minerales, a saber: pirítica framboidal, pirítica de alta temperatura (∼300 °C), pirítica coloforme, polimetálica y una asociación tardía rica en cobre de alta temperatura (350 °C). Los datos de inclusiones fluidas sugieren que los fluidos hidrotermales cambiaron continuamente de temperatura y salinidad, tanto en el tiempo como en el espacio. Las temperaturas y salinidades más altas corresponden a las zonas de stockwork más internas y a los fluidos más tardíos. Un análisis estadístico de poblaciones de las inclusiones fluidas señala tres estadios de actividad hidrotermal, a temperaturas bajas (<200 °C), intermedias (200–300 °C) y altas (300–400 °C). Los valores de 34S en los sulfuros masivos son inferiores a los de las mineralizaciones de stockwork, lo cual sugiere una actividad bacteriana moderada, favorecida por un ambiente euxínico durante el depósito de las pizarras negras. La íntima relación entre éstas y los sulfuros masivos apunta a un origen de estos últimos por precipitación y reemplazamiento de las pizarras negras, que habrían actuado como barreras, tanto físicas como químicas, durante el depósito de los sulfuros. La actividad hidrotermal comenzó durante el depósito de las pizarras negras, iniciada por un ascenso del gradiente térmico debido al ascenso de magmas básicos. Sugerimos un modelo genético en tres etapas: 1) Circulación difusa de fluidos a baja temperatura, que habría producido lentejones y diseminaciones de pirita interestratificadas con las pizarras negras. Localmente, también se produjo flujo canalizado a mayor temperatura; 2) actividad hidrotermal cíclica, a baja o media temperatura, que produjo la mayor parte de las mineralizaciones piríticas y polimetálicas, y 3) etapa de alta temperatura, que produjo mineralizaciones ricas en cobre con bismuto, sobre todo en la zona de stockwork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 3 March 1996 / Accepted: 10 April 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almodóvar, G., Sáez, R., Pons, J. et al. Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineral. Deposita 33, 111–136 (1997). https://doi.org/10.1007/s001260050136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001260050136

Keywords

Navigation