Skip to main content
Log in

Nature, origin and evolution of the granitoid-hosted early Proterozoic copper-molybdenum mineralization at Malanjkhand, Central India

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

At Malanjkhand, Central India, lode-type copper (-molybdenum) mineralization occurs within calcalkaline tonalite-granodiorite plutonic rocks of early Proterozoic age. The bulk of the mineralization occurs in sheeted quartz-sulfide veins, and K-silicate alteration assemblages, defined by alkali feldspar (K-feldspar ≫ albite) + dusty hematite in feldspar ± biotite ± muscovite, are prominent within the ore zone and the adjacent host rock. Weak propylitic alteration, defined by albite + biotite + epidote/zoisite, surrounds the K-silicate alteration zone. The mineralized zone is approximately 2 km in strike length, has a maximum thickness of 200 m and dips 65°–75°, along which low-grade mineralization has been traced up to a depth of about 1 km. The ore reserve has been conservatively estimated to be 92 million tonnes with an average Cu-content of 1.30%. Supergene oxidation, accompanied by limited copper enrichment, is observed down to a depth of 100m or more from the surface. Primary ores consist essentially of chalcopyrite and pyrite with minor magnetite and molybdenite. δ34S (‰) values in pyrite and chalcopyrite (−0.38 to +2.90) fall within the range characteristic of granitoid-hosted copper deposits. δ18O (‰) values for vein quartz (+ 6.99 to +8.80) suggest exclusive involvement of juvenile water. Annealed fabrics are common in the ore. The sequence of events that led to the present state of hypogene mineralization is suggested to be as follows: fracturing of the host rock, emplacement of barren vein quartz, pronounced wall-rock alteration accompanied by disseminated mineralization and the ultimate stage of intense silicification accompanied by copper mineralization. Fragments of vein quartz and altered wall rocks and striae in the ore suggest post-mineralization deformation. The recrystallization fabric, particularly in chalcopyrite and sphalerite, is a product of dynamic recrystallization associated with the post-mineralization shearing. The petrology of the host rocks, hydrothermal alteration assemblages, ore mineral associations, fluid inclusions and the sulfur and oxygen isotopes of ores are comparable to those in Phanerozoic (and reported Precambrian) porphyry-copper systems, and the Malanjkhand deposit has important implications for both metallogenic models for, and mineral exploration in, Precambrian terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, E.Y., Titley, S.R. (1988) Pre-mineralization igneous process at the Sierrita porphyry copper deposit, Arizona. In: Zachrisson, E. (ed.) Proc. 7th Quad. IAGOD Symp., Lulea. E. Schweiz, Stuttgart, Germany, pp. 535–546

    Google Scholar 

  • Atkinson, B.K. (1974) Experimental deformation of polycrystalline galena, chalcopyrite and pyrrhotite. Trans. Inst. Min. Metall. 83B:19–28

    Google Scholar 

  • Barker, F. (1979) Trondhjemite: Definition, environment and hypothesis of origin. In: Barker, F. (ed.) Trondhjemite, dacites and related rocks. Elsevicr, Amsterdam, pp. 1–12

    Google Scholar 

  • Barley, M.E. (1982) Porphyry-style mineralization associated with early Archean calc-alkaline igneous activity, Eastern Pilbara, Western Australia. Econ. Geol. 77:1230–1236

    Google Scholar 

  • Christiansen, E.C., Lee, D.E. (1986) Fluorine and chlorine in granitoids from the Basin and Range Province, Western United States. Econ. Geol. 81:1481–1494

    Google Scholar 

  • Clark, B.R., Kelly, W.C. (1973) Sulfide deformation studies: I. Experimental deformation of pyrrhotite and sphalerite to 2000 bars and 500 °C. Econ. Geol. 68:332–352

    Google Scholar 

  • Clark, B.R., Kelly, W.C. (1978) Experimental deformation of common sulfide minerals. In: Strens, R.G.J. (ed.) Physics and chemistry of minerals and rocks. Wiley, New York, pp. 51–69

    Google Scholar 

  • Cox, S.F., Etheridge, M.A., Hobbs, B.E. (1981) The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ. Geol. 76:2105–2117

    Google Scholar 

  • Cullers, R.L., Graf, J.L. (1984) Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks — ore petrogenesis. In: Henderson, P. (ed.) Rare earth element geochemistry. Elsevier, Amsterdam, pp. 275–316

    Google Scholar 

  • Davies, J.F., Luhta, L.E. (1978) An Archean “Porphyry-type” disseminated copper deposit, Timmins, Ontario. Econ. Geol. 73:383–396

    Google Scholar 

  • Gaal, G., Isohanni, M. (1979) Characteristics of igneous intrusions and various wall rocks in some Precambrian porphyry copper-molybdenum deposits in Pohjanmaa, Finland. Econ. Geol. 74:1198–1210

    Google Scholar 

  • Ghosh, P.K., Chandi, K.C., Bishui, P.K., Prasad, R. (1986) Rb-Sr age of granite gneiss in Malanjkhand area, Balaghat district, M.P. Ind. Miner. 40:1–8

    Google Scholar 

  • Goldie, R., Kotila, B., Seward, D., Trace, R.D. (1979) The Don Rouyn Mine: an Archean porphyry copper deposit near Noranda, Quebec. Econ. Geol. 74:1680–1684

    Google Scholar 

  • Gustafson, L.B. (1978) Some major factors of porphyry copper genesis. Econ. Geol. 73:600–607

    Google Scholar 

  • Hanson, G.N. (1980) Rare earth elements in petrogenetic studies of igneous systems. Ann. Rev. Earth Planet Sci. 8:371–406

    Google Scholar 

  • Ishihara, S. (1981) The granitoid series and mineralization. Econ. Geol. 75th Anniv. Vol.: 458–484

  • Lowell, L.D., Guilbert, J. (1970) Lateral and vertical alterationmineralization zoning in porphyry ore deposits. Econ. Geol. 65:373–408

    Google Scholar 

  • McMillan, W.J., Panteleyev, A. (1988) Porphyry copper deposits. In: Roberts, R.G. and Sheahan, P.A. (eds.) Ore deposit models. Geoscience Canada 3, pp. 45–66

  • Michard, A. (1989) Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 53:745–750

    Google Scholar 

  • Muller, W.H., Schmid, S.M., Briegel, U. (1981) Deformation experiments on anhydrite rocks of different grain sizes: rheology and microfabric. Tectonophysics 78:527–543

    Google Scholar 

  • Naik, M.S. (1989) Genesis of copper deposit at Malanjkhand, Madhya Pradesh. Ind. J. Earth Sci. 16:27–37

    Google Scholar 

  • Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38:757–775

    Article  Google Scholar 

  • Nurmi, P.A., Front, K., Nionen, E.L.M. (1984) Sveco-Karelian Porphyry-type molybdenum and copper occurrences in Southern Finland: their granitoid host rocks and lithogeochemical exploration. Geol. Surv. Finland, Report of Investigation 67, 88 pp

  • Ohmoto, H., Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits (2nd Edn.). John Wiley, New York, pp. 509–567

    Google Scholar 

  • O'Connor, J.T. (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol. Surv. Prof. Paper 525B:B79-B84

    Google Scholar 

  • Panigrahi, M.K., Misra, B., Mookherjee, A. (1991) Ore mineralogy and fluid inclusion characteristics of different ore associations from Malanjkhand copper deposit, M.P. (India). J. Geol. Soc. India 37:239–256

    Google Scholar 

  • Panigrahi, M.K., Mookherjee, A., Pantulu, G.V.C., Gopalan, K. (1993) Granitoids around the Malanjkhand copper deposit: types and age relationships. Proc. Ind. Acad. Sci. (Earth Planet Sci.) 102:399–413

    Google Scholar 

  • Pearce, J.A., Harris, N.B.W., Tindle, A.G. (1984) Trace element discrimination diagrams for tectonic interpretation of granitic rocks. J. Petrol. 25:956–983

    Google Scholar 

  • Petruk, W., Sikka, D.B. (1987) The formation of oxidized copper minerals at the Malanjkhand porphyry copper deposit in India and implications on metallurgy. In: Vassilion, A.H. (ed.) Process mineralogy VII, Met. Soc. AIME., pp. 403–420

  • Pirajno, F. (1992) Hydrothermal mineral deposits. Springer, Berlin Heidelberg New York, 709 pp

    Google Scholar 

  • Pyke, D.R., Middleton, R.S. (1971) Distribution and characteristics of the sulfide ores of the Timmins area. Can. Inst. Min. Metall. Trans. 74:157–168

    Google Scholar 

  • Rai, K.L., Venkatesh, A.S. (1990) Malanjkhand copper deposit-a petrological and geochemical appraisal. Spec. Publ. Geol. Surv. India 28:563–584

    Google Scholar 

  • Ramanathan, A., Bagchi, J., Panchapakesan, V., Sahu, B.K. (1990) Sulfide mineralization at Malanjkhand — a study. Spec. Publ. Geol. Surv. India 28:585–598

    Google Scholar 

  • Sarkar, A., Sarkar, G., Paul, D.K., Mitra, N.D. (1990) Precambrian geochronology of the central Indian Shield — a review. Spec. Publ. Geol. Surv. India 28:453–482

    Google Scholar 

  • Sarkar, S.C., Bhattacharyya, S., Kabiraj, S., Das, S., Pal, A.B. (1989) The granitoid-hosted early Proterozoic copper deposit of Malanjkhand, Central India — a study. In: Haapala, I., Kahkonen, Y. (eds.) Abst. Vol. Symp. Precam. granitoids — petrogenesis, geochemistry and metallogeny, Helsinki: pp. 118

  • Seetharam, R. (1976) Mineragraphic studies of the copper ore from Malanjkhand deposit, Balaghat district, M.P. Spec. Publ. Geol. Surv. India 3:141–151

    Google Scholar 

  • Sharma, R.K., Kumar, H. (1969) Geology and copper occurrences of the Malanjkhand area, Balaghat district, M.P. Ind. Mineral 23:23–39

    Google Scholar 

  • Sikka, D.B. (1989) Malanjkhand: Proterozoic porphyry copper deposit, M.P. India. J. Geol. Soc. India 34:487–504

    Google Scholar 

  • Taylor, H.P., Jr. (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits (Second Edn.). John Wiley, New York, pp. 236–277

    Google Scholar 

  • Taylor, R.P., Fryer, B.J. (1982) Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits. In: Evans, A.M. (ed.) Mineralization associated with acid magmatism. John Wiley, New York, pp. 357–365

    Google Scholar 

  • Theodore, T.G., Menzie, W.D. (1984) Fluorine deficient porphyry molybdenum deposits in the Western North American cordillera. In: Janelidze, T.V., Tvalchrelidze, T.V. (eds.) Proc. 6th Quad. IAGOD Symp., Tbilisi. Schweiz, Stuttgart, pp. 463–470

    Google Scholar 

  • Titley, S.R., Beane, R.E. (1981) Porphyry copper deposits, Pt I. Geologic settings, petrology and tectogenesis. Econ. Geol. 75th Anniv. Vol.:214–235

  • Tripathi, C., Ghosh, P.K., Thambi, P.I., Rao, T.V., Chandra, S. (1981) Elucidation of the stratigraphy and structure of Chilpi Group. Spec. Publ. Geol. Surv. India 3, pp. 17–30

    Google Scholar 

  • Turekian, K.K., Wedepohl, K.H. (1961) Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull 72:175–192

    Google Scholar 

  • Tullis, J., Yund, R.A. (1985) Dynamic recrystallization of feldspar: a mechanism for ductile shear zone formation. Geology 13:238–241

    Article  Google Scholar 

  • Vaughan, D.J., Craig, J.R. (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge, 493 pp

    Google Scholar 

  • Weihed, P., Isaksson, I., Svenson, S.A. (1987) The Tallberg porphyry copper deposit in northern Sweden, a preliminary report. Geol. Foeren. Stockholm Foerh. 109:47–53

    Google Scholar 

  • Weihed, P., Schoberg, H. (1991) Age of porphyry-type deposits in the Skellefte district, northern Sweden, Geol. Foeren. Stockholm Foerh. 113:298–294

    Google Scholar 

  • White, A.J.R., Chappell, B.W. (1977) Ultrametamorphism and granitoid gneisses. Tectonophysics 43:7–22

    Article  Google Scholar 

  • White, A.J.R., Clemens, J.D., Holloway, J.R., Silver, L.T., Chappell, B.W. (1986) S-type granites and their probable absence in southwestern North America. Geology 14:115–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S.C., Kabiraj, S., Bhattacharya, S. et al. Nature, origin and evolution of the granitoid-hosted early Proterozoic copper-molybdenum mineralization at Malanjkhand, Central India. Mineral. Deposita 31, 419–431 (1996). https://doi.org/10.1007/BF00189189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189189

Keywords

Navigation