Skip to main content
Log in

Carbon and oxygen isotopic covariations in hydrothermal calcites

Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains, Germany

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Isotopic covariations of carbon and oxygen in hydrothermal calcites are quantitatively modeled in terms of the following three mixing processes: (1) mixing between two different fluids which leads to the precipitation of calcite; (2) mixing between fluid and rock: (a) calcite precipitation due to fluid/rock interaction, (b) secondary alteration of primary calcite by interaction with a subsequent fluid. The models are derived from mass balance equations. A distinction among the three mixing processes can be made on a δ 13C vs δ 18O diagram, which places important constraints on the genesis of hydrothermal mineralization. The variables which control the ultimate isotopic composition of hydrothermal calcites include the composition of the initial fluid and the wallrock, temperature, and dissolved carbon species. Owing to significant temperature-dependent fractionation effects during equilibrium precipitation of calcite from a hydrothermal fluid, the mixing processes may be distinguished by telltale patterns of isotopic data in δ 13C vs δ 18O space. In particular, caution must be exercised in postulating the fluid mixing as the cause for mineral deposition. This is demonstrated for hydrothermal Pb-Zn deposits in the western Harz Mountains, Germany. A positive correlation between δ 13C and δ 18O values is observed for calcites from the Bad Grund deposit in the Upper Harz. Two sample profiles through calcite veins show similar correlations with the lowest δ-values at the center of the veins and the highest δ-values at the vein margins. Because the correlation array has a greater slope than for calcite precipitation at equilibrium in a closed system and because fluid mixing may not proceed perpendicular to the vein strike, it is assumed that a fluid/rock interaction is responsible for the observed correlation and thus for the precipitation of calcite. A deep-seated fluid is inferred with a δ 13C value of — 7% and a δ 18O value of +10%., as well as H2CO3 as the dominant dissolved carbon species; precipitation temperatures of the calcites are estimated to be about 280 ∼ 170°C. Quite different isotopic distributions are observed for calcites from the St. Andreasberg deposit in the Middle Harz. An alteration model is suggested based mainly on the isotopic distribution through a calcite vein. In addition to a primary fluid which has the same isotopic composition as that in the Bad Grund deposit and thus seems to be responsible for the precipitation of calcite associated with sulfides, an evolved, HCO -3 -dominant subsurface fluid with δ 13C about -20 ∼ — 15% and δ 18O ≤ 0% is deduced to alter the primary calcite at low temperatures of 70 ∼40°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banner, J.L., Hanson, G.N. (1990) Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54:3123–3137

    Google Scholar 

  • Behr, H.-J., Horn, E.E., Frentzel-Beyme, K., Reutel, C. (1987) Fluid inclusion characteristics of the Variscan and post-Variscan fluids in the Federal Republic of Germany. Chem. Geol. 61:273–285

    Google Scholar 

  • Boness, M. (1987) Die radiometrische Altersbestimmung der Pb-Zn Lagerstätte Grund (Harz) mit der Rb/Sr-Methode. Dissertation of Göttingen University, 169 pp.

  • Dahlgrün, F. (1950) Die zonale Verbreitung der Gangformation des Brockenplutons im Harz. Erzmetall 3:150–153

    Google Scholar 

  • Drummond, S.E., Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 80:126–147

    Google Scholar 

  • Gat, J.R. (1981) Grundwater. In: (eds.) Gat, J.R., Gonfiantini, R. Stable isotope hydrology — Deuterium and oxygen-18 in the water cycle. IAEC, Vienna, Technical Report Series 210:223–240

    Google Scholar 

  • Hoefs, J. (1987) Stable isotope geochemistry. 3rd edn. Springer, Berlin Heidelberg New York, 241 pp.

    Google Scholar 

  • Holland, H.D., Malinin, S.D. (1979) The solubility and occurrence of non-ore minerals. In: (ed.) Barnes, H.L. Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp. 461–508

    Google Scholar 

  • Lüders, V. (1988) Geochemische Untersuchungen an Erz- und Gangartmineralen des Harzes. Berliner Geowiss. Abh. A93:1–74

    Google Scholar 

  • Matsuhisa, Y., Morishita, Y., Sato, T. (1985) Oxygen and carbon isotope variations in gold-bearing hydrothermal veins in the Kushikino mining area, southern Kynshu, Japan. Econ. Geol. 80:283–293

    Google Scholar 

  • McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a paleo-temperature scale. J. Chem. Phys. 18:849–857

    Google Scholar 

  • Mohr, K. (1978) Geologie und Minerallagerstätten des Harzes. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 387 pp

    Google Scholar 

  • Möller, P., Morteani, G., Hoefs, J., Parekh, P.P. (1979) The origin of the ore-bearing solution in the Pb-Zn veins of the western Harz, Germany, as deduced from rare-earth element and isotopic distributions in calcites. Chem. Geol. 26:197–215

    Google Scholar 

  • Möller, P., Morteani, G., Dulski, P. (1984) The origin of the calcites from Pb-Zn veins in the Harz Mountains, Federal Republic of Germany. Chem. Geol. 45:91–112

    Google Scholar 

  • Nielsen, H. (1968) Schwefel-Isotopenverhältnisse aus St. Andreasberg und anderen Erzvorkommen des Harzes. Neues Jahrb. Mineral. Abh. 109:289–321

    Google Scholar 

  • Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 67:551–578

    Google Scholar 

  • Ohmoto, H., Rye, R.O. (1979) Isotopes of sulfur and carbon. In: (ed.) Barnes, H.L. Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp. 509–567

    Google Scholar 

  • O'Neil, J.R., Clayton, R.N., Meyeda, T.K. (1969) Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51:5547–5558

    Google Scholar 

  • Robinson, B.W. (1975) Carbon and oxygen isotopic equilibria in hydrothermal calcites. Geochem. J. 9:43–46

    Google Scholar 

  • Rye, D.M., Williams, N. (1981) Studies of the base metal sulfide deposits at McArthur River, Northern Territory, Australia: III. The stable isotope geochemistry of the H.Y.C. Ridge, and Cooley deposits. Econ. Geol. 76:1–26

    Google Scholar 

  • Schnorrer-Köhler, G. (1983) Die Silbererzrevier St. Andreasberg im Harz, 1 Teil. Aufschlusse 34:153–175

    Google Scholar 

  • Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. In: (eds.) Valley, J.W., Taylor, H.P., Jr., O'Neil, J.R., Stable isotopes in high temperature geological processes. Rev. Mineral. 16:165–183

    Google Scholar 

  • Sperling, H. (1973) Die Erzgänge des Erzbergwerks Grund. Geol. Jb. D2:1–205

    Google Scholar 

  • Sperling, H., Nielsen, H. (1973) Schwefel-Isotopenuntersuchungen an der Blei-Zink Erzlagerstätte Grund (Westharz, BRD). Mineral. Deposita 8:64–72

    Google Scholar 

  • Sperling, H., Stoppel, D. (1979) Die Blei-Zink Erzgänge des Oberharzes. Geol. Jb. D34:1–252

    Google Scholar 

  • Stedingk, K., Schnorrer-Köhler, G. (1988) Ein neues Vorkommen von rotem Glaskopf, Antimonit und Stibiconit am Erzbergwerk Grund (Oberharz). Aufschlusse 39:282–288

    Google Scholar 

  • Sverjensky, D.A. (1981) Isotopic alteration of carbonate host rocks as a function of water to rock ratio — An example from the Upper Mississippi Valley zinc-lead district. Econ. Geol. 76:154–157

    Google Scholar 

  • Taylor, H.P., Jr. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 69:843–883

    Google Scholar 

  • Taylor, H.P., Jr. (1977) Water/rock interactions and the origin of H2O in granitic batholiths. J. Geol. Soc. London 133:509–558

    Google Scholar 

  • Truesdell, A.H. (1974) Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures — Consequences for isotope geochemistry. Earth Planet. Sci. Lett. 23:387–396

    Google Scholar 

  • Vollmer, R. (1976) Rb-Sr and U-Th-Pb systematics of alkaline rocks: the alkaline rocks from Italy. Geochim. Cosmochim. Acta 40:283–295

    Google Scholar 

  • Walther, H.W. (1986) Mineral deposits in the Federal Republic of Germany. In: (eds.) Dunning, F.W., Evans, A.M. Mineral deposits of Europe, Vol. 3: Central Europe. The Institution of Mining and Metallurgy & The Mineralogical Society, London, pp. 230–237

    Google Scholar 

  • Wedepohl, K.H., Delevaux, M.H., Doe, B.R. (1978) The potential source of lead in the Permian Kupferschiefer Bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany. Contrib. Mineral. Petrol. 65:273–281

    Google Scholar 

  • Wilke, A. (1952) Die Erzgänge von St. Andreasberg im Rahmen des Mittelharz-Ganggebietes. Geol. Jb. 7:1–228

    Google Scholar 

  • Zheng, Y.-F. (1990) Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2: a quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineral. Deposita 25:246–250

    Google Scholar 

  • Zheng, Y.-F. (1991) C-, O- und S-Isotopengeochemische Untersuchungen an hydrothermalen Lagerstätten des Harzes. Dissertation of Göttingen University, 130 pp

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y.F., Hoefs, J. Carbon and oxygen isotopic covariations in hydrothermal calcites. Mineral. Deposita 28, 79–89 (1993). https://doi.org/10.1007/BF00196332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196332

Keywords

Navigation