Skip to main content
Log in

Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The relationship between inbreeding depression and inbreeding coefficient (F) for several important traits was investigated in an 11-year trial of maritime pine (Pinus pinaster). Five levels of inbreeding (F=0; 0.125; 0.25; 0.5; 0.75) were obtained in a mating design involving ten plus-trees, or their progenies, as parents (total of 51 families). For F=0.75, the mean inbreeding depressions were 27% for height, 37% for circumference at breast height (63% for bole volume), 23% for basal straightness (better straightness of the inbred trees), and 89% for female fertility (number of cones). Large differences were observed among inbred families for the same level of inbreeding. The evolution of depression with F was more or less linear, depending on the traits. Significant differences among F-levels appeared very early for height (from 5-years of age). Inbreeding depression was much more expressed during unfavorable years than during favorable years for yearly height growth. When compared with other Pinus species, maritime pine appears to be less affected by inbreeding, especially for the percentage of filled seeds and general vigor. A reduced genetic load in maritime pine may result from the evolutionary history of the species and its scattered distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson E, Jansson R, Lindgren D (1974) Some results from second generation crossings involving inbreeding in Norway spruce (Picea abies). Silvae Genet 23:34–43

    Google Scholar 

  • Bahrman N, Baradat PH, Petit R (1992) Structuration de la variabilité génétique du pin maritime dans l'ensemble de l'aire naturelle. Hypothèses explicatrices. In proc. of meeting “Complexes d'espèces, flux de gènes et ressources génétiques des plantes”, Bureau des Ressources Génétiques Eds, Lavoisier, Cachanz, pp 155–163

    Google Scholar 

  • Bahrman N, Zivy M, Damerval C, Baradat PH (1994) Organisation of the variability of abundant proteins in seven geographical origins of maritime pine (Pinus pinaster Ait). Theor Appl Genet 88:407–411

    Google Scholar 

  • Baradat PH (1987 a) Méthode d'évaluation de la consanguinité chez les plants issus de vergers à graines de semis de première génération. II. Vergers à graines de demi-frères. Slivae Genet 36:125–133

    Google Scholar 

  • Baradat PH (1987 b) Méthode d'évaluation de la consanguinité chez les plants issus de vergers à graines de semis de première génération. III. Les vergers d'équivalents-clones. Silvae Genet 36:134–144

    Google Scholar 

  • Baradat PH (1989) Amélioration génétique des arbres forestiers. Eléments méthodologiques. INRA, Laboratoire de Génétique et d'amélioration des arbres forestiers, Bordeaux, document interne

    Google Scholar 

  • Baradat PH, Letrilliart M (1987) Méthode d'évaluation de la consanguinité chez les plants issus de vergers à graines de semis de premiére génération. I. Vergers à graines de plein-freres. Silvae Genet 36:115–125

    Google Scholar 

  • Baradat PH, Marpeau-Bezard A (1988) Le Pin maritime Pinus pinaster Ait. Biologie et génétique des terpènes pour la connaissance et l'amélioration de l'espèce. Thèse Collective, Université de BORDEAUX I

  • Baradat PH, Pastuszka P (1992) Le pin maritime. In “Amélioration des espèces végétales cultivées, Objectifs et critères de sélection”. A Gallais et H Bannerot ed, INRA Editions, Paris

    Google Scholar 

  • Barker JE, Libby WJ (1974) The use of selfing in selection of forest trees. J. Genetics 61:152–167

    Google Scholar 

  • Bingham RT (1973) Possibilities for improvement of western white pine by inbreeding. USDA For Serv Res Pap INT-144

  • Bramlett D, Popham TW (1971) Model relating unsound seed and embryonic lethal alleles in self-pollinated pines. Silvae Genet 20:192–193

    Google Scholar 

  • Buijtenen JP van (1976) Mating designs. In Proc IUFRO Joint meeting on Advanced Generation Breeding. Bordeaux, France, pp 11–27

    Google Scholar 

  • Burdon RD, Namkoong G (1983) Short note: multiple populations and sublines. Silvae Genet 32:221–222

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Cotterill P, Dean C, Cameron J, Brindbergs M (1989) Nucleus breeding: a new strategy for rapid improvements under clonal forestry. In: Breeding tropical trees: population structure and genetic improvement strategies in clonal and seedling forestry. Gibson GI, Griffin AR, Matheson AC (eds). Oxford Forestry Institute, UK, pp 39–51

    Google Scholar 

  • Danjon F (1994) Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine. Theor Appl Genet 89:911–922

    Google Scholar 

  • Durel CE (1992 a) Adapation d'un modèle de sélection combinée à des familles issues d'autofécondation. Silvae Genet 41:6–22

    Google Scholar 

  • Durel CE (1992 b) Gains génétiques attendus après sélection sur index en seconde génération d'amélioration du pin maritime. Rev For Fr 44:341–355

    Google Scholar 

  • Euler F von, Baradat P, Lemoine B (1992) Effects of plantation density and spacing on competitive interactions among half-sib families of maritime pine. Can J For Res 22:482–489

    Google Scholar 

  • Falconer DS (1960) Introduction to quantitative genetics. Longman, London New York, pp 247–291

    Google Scholar 

  • Fowler DP (1965) Effects of inbreeding in red pine, Pinus resinosa Ait. II. Pollination studies. Silvae Genet 14:12–23

    Google Scholar 

  • Fowler DP, Morris RW (1977) Genetic diversity in red pine: evidence for low genie heterozygosity. Can J For Res 7:343–347

    Google Scholar 

  • Griffin AR, Cotterill PP (1988) Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet 37:124–131

    Google Scholar 

  • Griffin AR, Lindgren D (1986) Effect of inbreeding on production of filled seed in Pinus radiata — experimental results and a model of gene action. Theor Appl Genet 71:334–343

    Google Scholar 

  • Guinaudeau J (1964) La forêt landaise. Station de Recherches Forestières de Bordeaux, INRA, Document interne

  • Hallauer AR, Miranda JB (1981) Quantititive genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hamrick JL, Godt MJ, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Google Scholar 

  • Harfouche A (1995) Variabilité géographique et hybridation interraciale chez le pin maritime. (Pinus pinaster Ait.). Ph.D. thesis. Université Henri Poincaré, Nancy, France

    Google Scholar 

  • Harfouche A, Baradat PH, Kremer A (1995) Variabilité intraspécifique chez le pin maritime dans le Sud-Est de la France. Hétérosis et combinaison de caractères chez des hybrides interraciaux. Ann Sci For 52:329–346

    Google Scholar 

  • Katsuta M (1966) Further observations on the seed yield in selfpollination of Pinus thunbergii and P. densiflora. Misc Inf Tokyo Univ For 16:35–41

    Google Scholar 

  • Lemoine B (1980) Densité de peuplement, concurrence et coopération chez le pin maritime. II. Résultats à 5 et 10 ans d' une plantation à espacement variable. Ann Sci For 37:217–237

    Google Scholar 

  • Lundkvist K, Eriksson G, Norell L, Ekberg I (1987) Inbreeding depression in two field trials of young Pinus sylvestris (L.). Scand J For Res 2:281–290

    Google Scholar 

  • Libby WJ, McCutchan BG, Millar CI (1981) Inbreeding depression in selfs of redwood. Silvae Genet 30:15–25

    Google Scholar 

  • Lowe J, Van Buijtenen JP (1986) The development of a sublining system in an operational tree improvement program. In: IUFRO Joint Meeting ≪Breeding theory, progeny testing, seed orchards≫. Williamsburg, Virginia, USA., pp 98–106

    Google Scholar 

  • Matheson AC, White TL, Powell GR (1995) Effects of inbreeding on growth, stem form and rust resistance in Pinus elliottii. Silvae Genet 44:37–46

    Google Scholar 

  • McKeand SE, Bridgewater FE (1992) Third-generation breeding strategy for the North Carolina State University-Industry cooperative tree improvement program. In Proc IUFRO Conf Breeding Tropical Trees, Oct. 12–16, Cali, Colombia, pp 234–240

  • Moran GF, Bell JC (1987) The origin and genetic diversity of Pinus radiata in Australia. Theor Appl Genet 73:616–622

    Google Scholar 

  • Moran GF, Bell JC, Eldridge KG (1988) The genetic structure and the five natural populations of Pinus radiata. Can J For Res 18:506–514

    Google Scholar 

  • Morgante M, Vendramin GG, Ross P, Olivieri AM (1993) Selection against inbreds in early life-cycle phases in Pinus leucodermis Ant. Heredity 70:622–627

    Google Scholar 

  • Mosseler A, Egger KN, Hughes GA (1992) Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers. Can J For Res 22:1332–1337

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Colombia University Press, New York

    Google Scholar 

  • Park YS, Fowler DP (1984) Inbreeding in black spruce (Picea mariana (Mill.) B.S.P.): self-fertility, genetic load, and performance. Can J For Res 14:17–21

    Google Scholar 

  • Petit RJ, Bahrman N, Baradat PH (1995) Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci. Heredity 75:382–389

    Google Scholar 

  • Rudolph TD (1981) Four-year height growth variation among and within S0, S1 x S1, S1 open-pollinated, and S2 inbred jack pine families. Can J for Res 11:654–661

    Google Scholar 

  • Savolainen O, Karkkainen K, Kuittinen H (1992) Estimating numbers of embryonic lethals in conifers. Heredity 69:308–314

    Google Scholar 

  • Shelbourne CJA, Carson MJ, Wilcox MD (1989) New techniques in the genetic improvement of radiata pine. Commonwealth For Rev 68:191–201

    Google Scholar 

  • Sniezko RA, Zobel BJ (1988) Seedling height and diameter variation of various degrees of inbred and outcross progenies of loblolly pine. Silvae Genet 37:50–60

    Google Scholar 

  • Snyder EB (1968) Seed yield and nursery performance of self-pollinated slash pines. Forest Sci 14:68–74

    Google Scholar 

  • Snyder EB (1972) Five-year performance of self-pollinated slash pines. Forest Sci 18:246

    Google Scholar 

  • Sorensen FC, Miles RS (1974) Self-pollination effects on douglasfir and ponderosa pine seeds and seedlings. Silvae Genet 23:135–138

    Google Scholar 

  • Sorensen FC, Milles RS (1982) Inbreeding depression in height, height growth and survival of douglas-fir, ponderosa pine and noble fir to 10 years of age. Forest Sci 28:283–292

    Google Scholar 

  • Squillace AE, Kraus JF (1963) Effects of inbreeding on seed yield, germination, rate of germination, and seedling growth in slash pine. In: Proc For Gen Workshop. Southern For Tree Imp Committee, Macon Ga, pp 59–63

  • Wallace B (1963) Genetic diversity, genetic uniformity, and heterosis. Can J Genet Cytol 5:239–253

    Google Scholar 

  • White TL, Hodge GR, Powell GL (1993) An advanced generation tree improvement plan for slash pine in the southeastern United States. Silvae Genet 42:359–371

    Google Scholar 

  • Wilcox MD (1983) Inbreeding depression and genetic variances estimated from self-and cross-pollinated families of Pinus radiata. Silvae Genet 32:89–96

    Google Scholar 

  • Williams G, Savolainen O (1996) Inbreeding depression in conifers: implications for breeding strategy. Forest Sci 42 (in press)

  • Woods JH, Heaman JC (1989) Effect of different inbreeding levels on filled seed production in Douglas-fir. Can J For Res 19:54–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. M. A. Tigerstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durel, C.E., Bertin, P. & Kremer, A. Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theoret. Appl. Genetics 92, 347–356 (1996). https://doi.org/10.1007/BF00223678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223678

Key words

Navigation