Skip to main content
Log in

Hairy root transformation in alfalfa (Medicago sativa L.)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

The widely cultivated forage legume alfalfa (Medicago sativa L.) was transformed with the agropine type Agrobacterium rhizogenes NCPPB 1855. Sterile root and callus cultures were derived from tumorous hairy roots which were easily obtained independent of the plant variety or genotype. Plant regeneration, via somatic embryogenesis, was achieved only when a selected alfalfa line, characterized by high regenerative capability, was utilized. Genetic transformation was confirmed by the presence of agropine and T-DNA. Phenotypic alterations, mainly affecting the root system, were observed in transformed plants. The possibility that T-DNA-induced variations could be useful in the improvement of M. sativa is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann C (1977) Pflanzen aus Agrobacterium rhizogenes Tumoren an Nicotiana tabacum. Plant Sci Lett 8:23–30

    Google Scholar 

  • Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokininauxin balance in crown gall tumours is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411

    Google Scholar 

  • Cardarelli M, Spanò L, De Paolis A, Mauro ML, Vitali G, Costantino P (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5:385–391

    Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells. Nature 295:432–434

    Google Scholar 

  • Costantino P, Spanó L, Pomponi M, Benevenuto E, Ancora G (1984) The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2:465–470

    Google Scholar 

  • David C, Chilton MD, Tempé J (1984) Conservation of T-DNA in plant regenerated from hairy root cultures. Biotechnology 2:73–76

    Google Scholar 

  • De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spanò L, Costantino P (1985) Localization of agropine synthesizing functions in the TR-region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    Google Scholar 

  • Durand-Tardif M, Broglie R, Slinghtom J, Tepfer D (1985) Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum: organ phenotypic specificity. J Mol Biol 186:557–564

    Google Scholar 

  • Elliot C (1951) Manual of bacterial plant pathogens, 2nd rev edn. Chronica Botanica, Waltham, Mass

    Google Scholar 

  • Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester E (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422–427

    Google Scholar 

  • Gamborg OL, Moller RA, Ojina K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Google Scholar 

  • Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A (1977) Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Huffmann GA, White FF, Gordon MP, Nester EW (1984) Hairy root-inducing plasmid: physical map and homology to tumor inducing plasmid. J Bacteriol 157:269–276

    Google Scholar 

  • Ish-Horowicz D, Burke JF (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9:2989–2998

    Google Scholar 

  • Leemans J, De Blaere R, Willmitzer L, De Greve H, Hernalsteens JP, Van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcript in octopine crown gall. EMBO J 1:147–152

    Google Scholar 

  • Locker J (1979) Analytical and preparative electrophoresis of RNA in agarose-urea. Anal Biochem 98:358–367

    Google Scholar 

  • Mariotti D, Davey MR, Draper J, Freeman JP, Cocking EC (1984) Crown gall tumorigenesis in the forage legume Medicago sativa L. Plant Cell Physiol 25:473–482

    Google Scholar 

  • Murashige T, Skoog K (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Nester EW, Gordon MP, Amasino MR, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413

    Google Scholar 

  • Ooms G, Bains A, Burrell M, Karp A, Twell D, Wilcox E (1985b) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium. Theor Appl Genet 71:325–329

    Google Scholar 

  • Ooms G, Hooykaas PJJ, Moolenaar G, Schilperoort RA (1981) Crown gall plant tumours of abnormal morphology induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmid: analysis of T-DNA functions. Gene 14:33–50

    Google Scholar 

  • Ooms G, Karp A, Burrell M, Twell D, Reberts J (1985a) Genetic modification of potato development using Ri T-DNA. Theor Appl Genet 70:440–446

    Google Scholar 

  • Ooms G, Karp A, Roberts J (1983) From tumour to tuber: tumour cell characteristic and chromosome number of crown gall derived tetraploid potato plants (Solanum tuberosum cv ‘Maris Bard’). Theor Appl Genet 66:169–172

    Google Scholar 

  • Owens LD, Cress D (1985) Genotypic variability of soybean response to Agrobacterium strains harbouring the Ti or Ri plasmids. Plant Physiol 77:87–94

    Google Scholar 

  • Petit A, Berkaloff A, Tempé (1986) Multiple transformation of plant cells by Agrobacterium may be responsible for T-DNA complex organization in crown gall and hairy root. Mol Gen Genet 202:388–393

    Google Scholar 

  • Petit A, David C, Dahl G, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 19:204–214

    Google Scholar 

  • Pezzotti M, Arcioni S, Mariotti D (1984) Plant regeneration from mesophyll, root and cell suspension protoplasts of Medicago sativa cv. ‘Adriana’. Genet Agrar 38:195–208

    Google Scholar 

  • Pomponi M, Spanò L, Sabbadini MG, Costantino P (1983) Restriction endonuclease mapping of the root inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 10:119–129

    Google Scholar 

  • Rigby PW, Dieckman M, Rhodes C, Berg P (1977) Labelling DNA to high specific activity in vitro by nick-translation with DNA polymerase I. J Mol Biol 113:237–251

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Spanò L, Costantino P (1982) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco. Z Pflanzenphysiol 106:87–92

    Google Scholar 

  • Spanò L, Pomponi M, Costantino P, Van Slogteren GMS, Tempé J (1982) Identification of T-DNA in the root inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300

    Google Scholar 

  • Taylor BH, White FF, Nester EW, Gordon MP (1985) Transcription of Agrobacterium rhizogenes A4 T-DNA. Mol Gen Genet 20:546–553

    Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Google Scholar 

  • Tepfer D, Tempé J (1981) Production d'agropine par des racines formées sous l'action d'A. rhizogenes souce A4. CR Acad Sci Paris, Ser III 292:153–156

    Google Scholar 

  • Tomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and organization of Ti plasmid sequences in crown gall tumours. Cell 19:729–739

    Google Scholar 

  • Uchimiya H, Murashige T (1974) Evaluation of parameters in the isolation of viable protoplasts from cultured tobacco cells. Plant Physiol 54:936–944

    Google Scholar 

  • Webb KJ (1986) Transformation of forage legumes using Agrobacterium tumefaciens. Theor Appl Genet 72:53–59

    Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root tissues. Mol Gen Genet 186:16–22

    Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumour induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad USA 79:3193–3197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F.Salamini

Research work was partially supported by “Progetto Strategico Agrobiotecnologia” C.N.R., Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanò, L., Mariotti, D., Pezzotti, M. et al. Hairy root transformation in alfalfa (Medicago sativa L.). Theoret. Appl. Genetics 73, 523–530 (1987). https://doi.org/10.1007/BF00289189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289189

Key words

Navigation