Skip to main content
Log in

An angular momentum projected particle-hole theory for deformed nuclei and its application to theT=1 negative parity states of20Ne

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

An angular momentum projected particle-hole theory is proposed as an approach to describe excited states of deformed nuclei. Both for the ground and the excited states, angular momentum projections are done before variation. This allows one to look for the effect, with an appropriate constraint, of the difference in the deformations of these states. The theory is applied to the case of Ne20 where the splitting of the giant resonance is observed. Other negative parity states are also studied and their transitions to the 2+ member of the ground state band show interesting features which may have experimental implications. On the other hand, the change in the deformation of the excited states has only a small effect on the transition probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. of the Int. Conf. on Photonuclear Reactions and Applications. Asilomar 1973, ed. by B.L. Berman

  2. Birkholz, J.:ibid. Proc. of the Int. Conf. on Photonuclear Reactions and Applications Asilomar 1973, ed. by B.L. Berman p. 503; Nucl. Phys. A189, 385 (1972)

  3. Krewald, S., Birkholz, F., Speth, J.: Private communication

  4. Mahaux, C., Weidenmüller, H.A.: Shell-Model Approach to Nuclear Reactions, Amsterdam: North-Holland 1969

    Google Scholar 

  5. Feshbach, H.: Ann. Phys.5, 357 (1958);19, 287 (1962)

    Google Scholar 

  6. Bloch, C.: Proc. Int. School Enrico Fermi XXXVI, New York: Acad. Press 1966

    Google Scholar 

  7. Wigner, E.P., Eisenbud, L.: Phys. Rev.72, 29 (1947)

    Google Scholar 

  8. Lane, A.M., Thomas, R.G.: Rev. Mod. Phys.30, 257 (1958)

    Google Scholar 

  9. Ayad, A.A., Rowe, D.J.: Nucl. Phys. A218, 307 (1974)

    Google Scholar 

  10. Bohr, A., Mottelson, B.R.: K. Dan. Vid. Sel., Mat. Fys. Medd.27, No. 16 (1953)

  11. Afnan, I.R.: Phys. Rev.163, 1016 (1967)

    Google Scholar 

  12. Schmid, K.W., Krewald, S., Faessler, A., Satpathy, L.: Z. Physik271, 149 (1974)

    Google Scholar 

  13. Danos, M.: Nucl. Phys.5, 23 (1958)

    Google Scholar 

  14. Okamoto, K.: Phys. Rev.110, 143 (1958)

    Google Scholar 

  15. Danos, M., Fuller, E.G.: Ann. Rev. Nucl. Sci.15, 29 (1965)

    Google Scholar 

  16. Ripka, G.: Adv. Nucl. Phys., Vol. 1, New York: Plenum Press 1968, ed. by M. Baranger and E. Voigt

    Google Scholar 

  17. Thouless, D.J.: Nucl. Phys.21, 255 (1960)

    Google Scholar 

  18. Messiah, A.: Quantum Mechanics, Amsterdam: North-Holland 1969

    Google Scholar 

  19. Peierls, R.E., Yoccoz, J.: Proc. Phys. Soc. A70, 381 (1957)

    Google Scholar 

  20. Villars, F.: Proc. Int. School Enrico Fermi XXXVI, New York: Acad. Press 1966

    Google Scholar 

  21. Löwdin, P.O.: Phys. Rev.97, 1474 (1955)

    Google Scholar 

  22. Lee, H.C., Cusson, R.Y.: Phys. Rev. Lett.29, 1525 (1972)

    Google Scholar 

  23. Elliott, J.P., Skyrme, T.H.R.: Proc. Roy. Soc. A323, 561 (1955)

    Google Scholar 

  24. Eisenberg, J.M., Greiner, W.: Nucl. Theory, Vol. 2, Amsterdam: North-Holland 1972

    Google Scholar 

  25. Claudemans, P.W.M.: Lectures at the Rudzinska Summer School, Poland 1971

  26. Halbert, E., McCrary, J.B., Wildenthal, B.H., Pandhya, S.P.: Adv. Nucl. Phys., Vol. 4, New York: Plenum Press 1971, ed. by M. Baranger and E. Vogt

    Google Scholar 

  27. Brink, D.M., Boeker, E.: Nucl. Phys. A91, 1 (1967)

    Google Scholar 

  28. Wilkinson, J.H.: The Algebraic Eigenvalue Problem, Oxford (U.K.): Clarendon Press 1965

    Google Scholar 

  29. Kuehner, J.A., Ollerhead, R.W.: Phys. Lett.20, 301 (1966)

    Google Scholar 

  30. Litherland, A.E., Kuehner, J.A., Gorg, H.E., Clark, M.A., Almqvist, E.: Phys. Rev. Lett.7, 98 (1961)

    Google Scholar 

  31. Häusser, O., Ferguson, A.J., McDonald, A.B., Szöghy, I.M., Alexander, T.K., Disdier, D.L.: Nucl. Phys. A179, 465 (1972)

    Google Scholar 

  32. Alexander, T.K., Häusser, O., McDonald, A.B., Ferguson, A.J.: Nucl. Phys. A179, 477 (1972)

    Google Scholar 

  33. Lane, A.M., Mekjian, A.Z.: Phys. Rev. C8, 1981 (1973)

    Google Scholar 

  34. Segel, R.E., Vager, Z., Meyer-Schützmeister, L., Singh, P.P., Allas, R.G.: Nucl. Phys. A93, 31 (1967)

    Google Scholar 

  35. Harakeh, M.N., Paul, P., Gorodetzky, P.H.: Phys. Rev. C11, 998 (1975); C11, 1008 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Laboratoire associé au Centre National de la Recherche Scientifique.

One of the authors (K.W.S.) would like to thank the Kernforschungsanlage Jülich and Prof. A. Faessler for their agreement to his one-year leave and acknowledge the kind hospitality of the Laboratoire de Physique Theorique et Hautes Energies at Orsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, K.W., Dang, G.D. An angular momentum projected particle-hole theory for deformed nuclei and its application to theT=1 negative parity states of20Ne. Z Physik A 276, 233–243 (1976). https://doi.org/10.1007/BF01412101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01412101

Keywords

Navigation