Skip to main content
Log in

The neutron decay retardation spectrometer aSPECT: Electromagnetic design and systematic effects

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The apparatus described here, aSPECT, will be used for a measurement of the neutrino-electron angular correlation coefficient a in the decay of free neutrons. The idea of the aSPECT spectrometer is to measure the integrated proton energy spectrum very accurately using an energy filter by electrostatic retardation and magnetic adiabatic collimation. The main ideas of the spectrometer are presented, followed by an explanation of the adiabatic transmission function. Details of the superconducting coil and of the electrode system are given, as well as a discussion of the most important systematic effects: magnetic field and electrostatic potential inhomogeneities, deviation from adiabatic motion, scattering in the residual gas, background, Doppler effect, edge effect, and detector efficiency. Using this spectrometer, the parameter a is planned to be measured with an absolute experimental uncertainty of δa ≈ 3 . 10-4, from which the axial vector to vector coupling constant ratio λ can be determined with an accuracy of δλ ≈ 0.001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Byrne, Rep. Prog. Phys. 45, 115 (1982)

    Article  Google Scholar 

  2. D. Dubbers, Prog. Part. Nucl. Phys. 26, 173 (1991).

    Article  Google Scholar 

  3. K. Schreckenbach, W. Mampe, J. Phys. G 18, 1 (1992).

    Google Scholar 

  4. D. Dubbers, W. Mampe, J. Döhner, Europhys. Lett. 11, 195 (1990)

    Google Scholar 

  5. F.E. Close, Nucl. Phys. A 508, 413 (1990).

    Article  Google Scholar 

  6. J.D. Jackson, S.B. Treiman, H.W. Wyld, Phys. Rev. 106, 517 (1957).

    Article  Google Scholar 

  7. F. Glück, I. Joó, J. Last, Nucl. Phys. A 593, 125 (1995).

    Article  Google Scholar 

  8. B.G. Yerozolimsky, Nucl. Instrum. Methods A 440, 491 (2000)

    Google Scholar 

  9. B.G. Yerozolimsky, Phys. Lett. B 263, 33 (1991)

    Article  Google Scholar 

  10. K. Schreckenbach, P. Liaud, R. Kossakowski, H. Nastoll, A. Bussière, J.P. Guillaud, Phys. Lett. B 349, 427 (1995)

    Article  Google Scholar 

  11. H. Abele, M. Astruc Hoffmann, S. Baeßler, D. Dubbers, F. Glück, U. Müller, V. Nesvizhevsky, J. Reich, O. Zimmer, Phys. Rev. Lett. 88, 211801 (2002)

    Article  Google Scholar 

  12. I.S. Towner, J.C. Hardy, in WEIN98 Conference Proceedings, Santa Fe, (1998) (World Scientific, Singapore, 1999), arXiv:nucl-th/9809087

  13. D.H. Wilkinson, Nucl. Instrum. Methods A 488, 654 (2000).

    Google Scholar 

  14. Particle Data Group, K. Hagiwara, Phys. Rev. D 66, 010001 (2002).

    Article  Google Scholar 

  15. C. Stratowa, R. Dobrozemsky, P. Weinzierl, Phys. Rev. D 18, 3970 (1978).

    Article  Google Scholar 

  16. J. Byrne, P.G. Dawber, M.G.D. van der Grinten, C.G. Habeck, F. Shaikh, J.A. Spain, R.D. Scott, C.A. Baker, K. Green, O. Zimmer, J. Phys. G 28, 1325 (2002).

    Google Scholar 

  17. O. Zimmer, J. Byrne, M.G.D. van der Grinten, W. Heil, F. Glück, Nucl. Instrum. Methods A 440, 548 (2000).

    Google Scholar 

  18. J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley & Sons, 1998).

  19. T. Hsu, J.L. Hirshfield, Rev. Sci. Instrum. 47, 236 (1976)

    Article  Google Scholar 

  20. J. Byrne, J. Morse, K.F. Smith, F. Shaikh, K. Green, G.L. Greene, Phys. Lett. B 92, 274 (1980).

    Article  Google Scholar 

  21. V.M. Lobashev, P.E. Spivak, Nucl. Instrum. Methods A 240, 305 (1985)

    Google Scholar 

  22. H. Backe, Phys. Scr. T 22, 98 (1988)

    Google Scholar 

  23. A. Osipowicz, arXiv:hep-ex/0109033

  24. D. Beck, F. Ames, M. Beck, G. Bollen, B. Delauré, J. Deutsch, J. Dilling, O. Foerstner, T. Phalet, R. Prieels, W. Quint, P. Schmidt, P. Schuurmans, N. Severijns, B. Vereecke, S. Versyck, Nucl. Phys. A 701, 369c (2002).

    Article  Google Scholar 

  25. S.R. Lee, P.G. Dawber, J. Byrne, WEIN Conference Proceedings, Dubna, CIS (JINR, Russia, 1992) p. 523.

  26. J. Byrne, P.G. Dawber, S.R. Lee, Nucl. Instrum. Methods A 349, 454 (1994).

    Google Scholar 

  27. T.G. Northrop, The Adiabatic Motion of Charged Particles (Interscience Publ., 1963).

  28. P.C. Clemmow, J.P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley Publ. Comp., 1969).

  29. R. Dendy (Editor), Plasma Physics: An Introductional Course (Cambridge University Press, 1993).

  30. F. Glück, Phys. Rev. D 47, 2840 (1993).

    Article  Google Scholar 

  31. H. Pietschmann, Acta Phys. Austriaca Suppl. (Particles, Currents, Symmetries), edited by P. Urban (Springer-Verlag, 1968) p. 88.

  32. O. Nachtmann, Z. Phys. 215, 505 (1968).

    Google Scholar 

  33. C.G. Habeck, doctoral thesis, University of Sussex (1997).

  34. R. Dobrozemsky, Nucl. Instrum. Methods 118, 1 (1974).

    Google Scholar 

  35. www-cfadc.phy.ornl.gov (go to: ELASTIC, Isotopomers of hydrogen ions ).

  36. P.S. Krstic, D.R. Schultz, J. Phys. B 32, 2415 (1999)

    Google Scholar 

  37. C.F. Giese, W.R. Gentry, Phys. Rev. A 10, 2156 (1974)

    Article  Google Scholar 

  38. R.K. Janev, Elementary Processes in Hydrogen-Helium Plasmas (Springer-Verlag, 1987).

  39. T. Tabata, T. Shirai, At. Data Nucl. Data Tables 76, 1 (2000).

    Google Scholar 

  40. D.W. Koopman, Phys. Rev. 154, 79 (1967)

    Article  Google Scholar 

  41. J. L’Ecuyer, J.A. Davies, N. Matsunami, Nucl. Instrum. Methods 160, 337 (1979).

    Article  Google Scholar 

  42. F. Glück, Axisymmetric electric field calculation with charge density method, to be published.

  43. F. Glück, Axisymmetric magnetic field calculation with Legendre polynomials and elliptic integrals, to be published.

  44. M.W. Garrett, J. Appl. Phys. 22, 1091 (1951)

    Google Scholar 

  45. G. Engeln-Müllges, F. Reutter, Numerik-Algorithmen mit Fortran 77 Programmen (Wissenschaftsverlag, 1993) Chapt. 17.

  46. J.H. Verner, SIAM J. Numer. Anal. 15, 772 (1978).

    MATH  Google Scholar 

  47. P.W. Hawkes, E. Kasper, Principles of Electron Optics, Vol. 1 (Academic Press, 1989).

  48. E.R. Andrew, J. Sci. Instrum. 43, 936 (1966).

    Article  Google Scholar 

  49. K. Kaminishi, S. Nawata, Rev. Sci. Instrum. 52, 447 (1981).

    Article  Google Scholar 

  50. F. Glück, Axisymmetric coil design for homogeneous magnetic field, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Th. Walcher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glück, F., Baeßler, S., Byrne, J. et al. The neutron decay retardation spectrometer aSPECT: Electromagnetic design and systematic effects. Eur. Phys. J. A 23, 135–146 (2005). https://doi.org/10.1140/epja/i2004-10057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10057-1

PACS.

Navigation