Skip to main content
Log in

Structure and properties of InGaAs layers grown by low-temperature molecular-beam epitaxy

  • Atomic Structure and Non-Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

This paper describes studies of InGaAs layers grown by molecular-beam epitaxy on InP (100) substrates at temperatures of 150–480 °C using various arsenic fluxes. It was found that lowering the epitaxy temperature leads to changes in the growth surface, trapping of excess arsenic, and an increased lattice parameter of the epitaxial layer. When these lowtemperature (LT) grown samples are annealed, the lattice parameter relaxes and excess arsenic clusters form in the InGaAs matrix. For samples grown at 150 °C and annealed at 500 °C, the concentration of these clusters was ∼8×1016 cm−3, with an average cluster size of ∼5 nm. Assuming that all the excess arsenic is initially trapped in the form of antisite defects, the magnitude of the LT-grown InGaAs lattice parameter relaxation caused by annealing implies an excess arsenic concentration (N AsN GaN In)/(N As+N Ga+N In)=0.4 at.%. For layers of InGaAs grown at 150 °C, a high concentration of free electrons (∼1×1017 cm−3) is characteristic. Annealing such layers at 500 °C decreases the concentration of electrons to ∼1×1017 cm−3. The results obtained here indicate that this change in the free-electron concentration correlates qualitatively with the change in excess arsenic concentration in the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-J. Tsaur, and A. R. Calawa, Appl. Phys. Lett. 54, 1881 (1989).

    Article  ADS  Google Scholar 

  2. Kin Man Ju, M. Kaminska, and Z. Liliental-Weber, J. Appl. Phys. 72, 2850 (1992).

    ADS  Google Scholar 

  3. N. A. Bert, A. I. Veinger, M. D. Vilisova, S. I. Goloshchapov, I. V. Ivonin, S. V. Kozyrev, A. E. Kunitsyn, L. G. Lavrent’eva, D. I. Lubyshev, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Tret’yakov, V. V. Chaldyshev, and M. P. Yakubenya, Fiz. Tverd. Tela (St. Petersburg) 35, 2609 (1993) [Phys. Solid State 35, 1289 (1993)].

    Google Scholar 

  4. Y. J. Chin, S. B. Fleischer, D. Lasaosa, and J. Bowers, Appl. Phys. Lett. 71, 2508 (1997).

    ADS  Google Scholar 

  5. R. A. Metzger, A. S. Brown, W. E. Stanchina, M. Liu, R. G. Wilson, T. V. Kargodorian, L. G. McCray, and J. A. Henige, J. Cryst. Growth 111, 445 (1991).

    Article  Google Scholar 

  6. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, Appl. Phys. Lett. 61, 1347 (1992).

    ADS  Google Scholar 

  7. R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, J. Vac. Sci. Technol. B 11, 798 (1993).

    Article  Google Scholar 

  8. N. D. Zakharov, Z. Liliental-Weber, W. Sweder, A. S. Brown, and R. A. Metzger, Appl. Phys. Lett. 63, 2809 (1993).

    Article  ADS  Google Scholar 

  9. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, Appl. Phys. Lett. 67, 279 (1995).

    ADS  Google Scholar 

  10. M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental-Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, J. Appl. Phys. 83, 561 (1998).

    Article  ADS  Google Scholar 

  11. J. Betko, M. Morvic, J. Novak, A. Forster, and P. Kordos, Appl. Phys. Lett. 69, 2563 (1996).

    Article  ADS  Google Scholar 

  12. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, Appl. Phys. Lett. 65, 3002 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 900–906 (August 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilisova, M.D., Ivonin, I.V., Lavrentieva, L.G. et al. Structure and properties of InGaAs layers grown by low-temperature molecular-beam epitaxy. Semiconductors 33, 824–829 (1999). https://doi.org/10.1134/1.1187790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187790

Keywords

Navigation