Skip to main content
Log in

Influence of surface on the effective magnetic fields in α-Fe2O3 and FeBO3

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

First measurements of the effective magnetic fields as a function of the depth at which the iron ions are in the surface layer of α-Fe2O3 and FeBO3 single crystals are reported. The method used is the depth-selective conversion-electron Mössbauer spectroscopy. An analysis of experimental spectra revealed that the magnetic properties of the crystal surface vary smoothly from the bulk to surface characteristics within a layer ∼100 nm thick. The layers lying below ∼100 nm from the surface are similar in properties to the bulk of the crystal, and their spectra consist of narrow lines. The spectral linewidths increase smoothly as one approaches the crystal surface. The spectra obtained from a ∼10-nm thick surface layer consist of broad lines indicating a broad distribution of effective magnetic fields. Calculations show that the field distribution width in this layer is δ=2.1(3) T, for an average value H eff=32.2(4) T. It has been experimentally established that, at room temperature (291 K), the effective magnetic fields smoothly decrease as one approaches the crystal surface. The effective fields in a 2.4(9)-nm surface layer of α-Fe2O3 crystals are lower by 0.7(2)% than the fields at the ion nuclei in the bulk of the sample. In the case of FeBO3, the effective fields decrease by 1.2(3)% in a surface layer 4.9(9) nm thick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Freeman, J. Magn. Magn. Mater. 35, 31 (1983); S. Ohnishi, A. J. Freeman, and M. Wienert, J. Magn. Magn. Mater. 31–34, 889 (1983).

    Article  ADS  Google Scholar 

  2. A. H. Ovens, C. L. Chien, and J. C. Walker, J. Phys. (Paris) 40, C2–74 (1978); G. Bayreuter, J. Vac. Sci. Technol. A 1, 19 (1983).

    Google Scholar 

  3. T. Yang, A. Krishnan, N. Benczer-Koller, and G. Bayreuther, Phys. Rev. Lett. 48, 1292 (1982); T. Yang, J. Trooster, T. Kachnovski, and R. Benczer-Koller, Hyperfine Interactions 10, 795 (1981).

    Article  ADS  Google Scholar 

  4. A. J. Tyson, H. Ovens, and J. C. Walker, J. Magn. Magn. Mater. 35, 126 (1983); A. J. Tyson, H. Ovens, J. C. Walker, and G. Bayreuter, J. Appl. Phys. 52, 2487 (1981).

    Article  ADS  Google Scholar 

  5. D. L. Mills and A. A. Maradudin, J. Phys. Chem. Solids 28, 1855 (1967).

    Google Scholar 

  6. U. Gradmann, J. Walker, R. Feder, and E. Tamura, J. Magn. Magn. Mater. 31–34, 1 (1983).

    Google Scholar 

  7. E. Moll and E. Kankeleit, Nukleonik 7, 180 (1965).

    Google Scholar 

  8. B. Stahl and E. Kankeleit, Nucl. Instrum. Methods Phys. Res. B 122, 149 (1997).

    Article  ADS  Google Scholar 

  9. B. Stahl, R. Gellert, O. Geiss, et al., GSI Scientiic Report, Darmstadt, Germany (1994), p. 180; R. Gellert, O. Geiss, G. Klingelhofer, et al., Nucl. Instrum. Methods Phys. Res. B 76, 381 (1993).

  10. D. Liljequist, T. Ekdahl, and L. Baverstam, Nucl. Instrum. Methods 155, 5292 (1978).

    Article  Google Scholar 

  11. M. Eibschutz and M. E. Lines, Phys. Rev. B 7, 4907 (1973).

    ADS  Google Scholar 

  12. A. S. Kamzin and L. A. Grigor’ev, Fiz. Tverd. Tela (St. Petersburg) 36, 1271 (1994) [Phys. Solid State 36, 694 (1994)]; Zh. Éksp. Teor. Fiz. 104, 3489 (1993) [JETP 77, 658 (1993)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 9, 2000, pp. 1644–1648.

Original Russian Text Copyright © 2000 by Kamzin, Stahl, Gellert, Müller, Kankeleit, Vcherashni\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamzin, A.S., Stahl, B., Gellert, R. et al. Influence of surface on the effective magnetic fields in α-Fe2O3 and FeBO3 . Phys. Solid State 42, 1691–1695 (2000). https://doi.org/10.1134/1.1309453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1309453

Keywords

Navigation