Skip to main content
Log in

Sonoluminescence: A new electrical breakdown hypothesis

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

We discuss an hypothesis wherein single-bubble sonoluminescence is attributed to electrical breakdown due to large pressure gradients existing for small bubble radii. These large gradients produce large electric fields (the flexoelectric effect) that lead to electrical breakdown, releasing energies up to 10−10 J, which is much larger than the light energy released in each cycle. This hypothesis appears to be consistent with several observations made in studies of the sonoluminescence process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Frenzel and H. Schultes, Z. Phys. Chem. B 27, 421 (1934).

    Google Scholar 

  2. D. F. Gaitan and L. A. Crum, in Frontiers of Nonlinear Acoustics, M. Hamilton and D. T. Blackstock, eds., Elsevier, New York, 1990, p. 459; D. F. Gaitan, L. A. Crum, R. A. Roy, and C. C. Church, J. Acoust. Soc. Am. 91, 3166 (1992).

    Google Scholar 

  3. L. A. Crum, Phys. Today 47, No. 9, 22 (1994).

    Google Scholar 

  4. V. N. Levshin and S. N. Rzhevkin, DAN SSSR 16, 407 (1937).

    Google Scholar 

  5. E. N. Harvey, J. Am. Chem. Soc. 61, 2392 (1939).

    Article  Google Scholar 

  6. Ya. I. Frenkel’, Zhur. Fiz. Khim. 14, 305 (1940); G. L. Natanson, DAN SSSR 59, 83 (1948).

    Google Scholar 

  7. M. Degrois and P. Baldo, Ultrasonics 12, 25 (1974).

    Google Scholar 

  8. M. A. Margulis, Zh. Fiz. Khim. 59, 1497 (1985) J. Phys. Chem. 59, 882 (1985); Ultrasonics 30, 152 (1992).

    Google Scholar 

  9. M. A. Margulis, Zh. Fiz. Khim. 55, 154 (1981) J. Phys. Chem. 55, 81 (1981).

    Google Scholar 

  10. C. M. Sehgal and R. E. Verral, Ultrasonics 20, 37 (1982).

    Article  Google Scholar 

  11. A. K. Tagantsev, Usp. Fiz. Nauk 152, 423 (1987) [Sov. Phys. Usp. 30, 588 (1987)].

    Google Scholar 

  12. P. Harris, J. Appl. Phys. 36, 739 (1965); P. Harris and H.-N. Presles, J. Phys. Chem. 77, 5157 (1982).

    Google Scholar 

  13. J. B. Hasted, Prog. Diel. 3, 103 (1961).

    Google Scholar 

  14. B. P. Barber and S. J. Putterman, Phys. Rev. Lett. 69, 3839 (1992); R. Lofsted, B. P. Barber and S. J. Putterman, Phys. Fluids A 5, 2911 (1993).

    Article  ADS  Google Scholar 

  15. N. García, A. Hasmy and A. P. Levanyuk, (to be published).

  16. Y. Toriyama, and U. Shinohara, Phys. Rev. 51, 680 (1937).

    Article  ADS  Google Scholar 

  17. H. Frolich, Adv. Phys. A3, 325 (1961).

    ADS  Google Scholar 

  18. P. D. Jarman, J. Acoust. Soc. Am. 69, 1459 (1960).

    Google Scholar 

  19. L. Kondić, J. L. Gersten, and Chi Yuan, Phys. Rev. E 52, 4976 (1995).

    ADS  Google Scholar 

  20. K. Weninger, S. J. Putterman, and B. P. Barber, Phys. Rev. E 54, 2205 (1996).

    Article  ADS  Google Scholar 

  21. R. Hiller, K. Wenniger, S. J. Putterman, B. P. Barber, Science 266, 248 (1994).

    ADS  Google Scholar 

  22. F. M. Penning, Naturwissenschaften 15, 818 (1927); Physica 1, 1007 (1934).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 64, No. 12, 849–852 (25 December 1996)

Published in English in the original Russian journal. Edited by Steve Torstreit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, N., Levanyuk, A.P. Sonoluminescence: A new electrical breakdown hypothesis. Jetp Lett. 64, 907–910 (1996). https://doi.org/10.1134/1.567246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.567246

PACS numbers

Navigation