Skip to main content
Log in

Dependence of exchange interactions on chemical bond angle in a structural series: Cubic perovskite-rhombic orthoferrite-rhombohedral hematite

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy is used to study the hyperfine magnetic fields at tin 119Sn ions introduced as an isomorphic impurity in the lattices of the orthoferrites RFeO3. The large reduction in the field H hfSn (4.2 K) observed when R is changed from La to Lu correlates with the drop in the Néel point and indicates that the exchange interactions are decreasing over this series. A crystal chemical analysis of the structural series with the general formula ABO3 shows that the ideal structure of cubic perovskite can be converted to a rhombohedral hematite-corundum structure by simple rotation of the [BO6] octahedra if the B-O interionic distances remain unchanged. The rhombic distortions are associated with a reduction in the B-O-B bond angle from θ =180° in perovskite to ∼132° in hematite. The rare earth orthoferrites RFeO3 follow the same mechanism for structural transformations and the LaFeO3-LuFeO3 series occupies an intermediate position (157°>θ>142°) between the extreme members of the series mentioned above. A reduction in the bond angle leads to weakening of the Fe-O-Fe exchange interaction, which shows up as a drop in the Néel temperature and in the hyperfine magnetic field at the nucleus. An analysis of theoretical models shows that for a suitable choice of the exchange and transfer parameters, the angular variation in the parameters of the exchange interaction is described fairly well by the Moskvin theory over a rather wide range of angles θ. The contributions to the fields H hfSn and H hfFe from the t 2g -and e g -orbitals of neighboring paramagnetic ions in the orthoferrites and orthochromites are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Geller, J. Chem. Phys. 24, 1236 (1956).

    Article  Google Scholar 

  2. W. C. Koehler and E. O. Wollan, J. Phys. Chem. Solids 2, 100 (1957).

    Google Scholar 

  3. V. E. Naish and E. A. Turov, Fiz. Met. Metalloved. 11, 161, 321 (1961).

    Google Scholar 

  4. V. E. Naish and E. A. Turov, Fiz. Met. Metalloved. 9, 10 (1960).

    Google Scholar 

  5. M. Eibschutz, S. Shtrikman, and D. Treves, Phys. Rev. 156, 562 (1967).

    ADS  Google Scholar 

  6. S. Geller, J. P. Remeika, R. C. Sherwood, H. G. Williams, and G. P. Espinoza, Phys. Rev. A 137, 1034 (1965).

    ADS  Google Scholar 

  7. S. Geller, H. J. Williams, and R. C. Sherwood, Phys. Rev. 123, 1692 (1961).

    Article  ADS  Google Scholar 

  8. E. F. Bertaut and R. Pauthenet, Proc. IEE, Suppl. B 104, 261 (1957).

    Google Scholar 

  9. I. S. Lyubutin and Yu. S. Vishnhakov, Zh. Éksp. Teor. Fiz. 61, 1962 (1971) [Sov. Phys. JETP 34, 1045 (1971)].

    Google Scholar 

  10. M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 26, 2008 (1970).

    Google Scholar 

  11. P. Coppens and V. Eibschutz, Acta Crystallogr. 19, 524 (1965).

    Article  Google Scholar 

  12. S. Geller and E. A. Wood, Acta Crystallogr. 9, 563 (1956).

    Google Scholar 

  13. S. Geller and V. B. Bala, Acta Crystallogr. 9, 1019 (1956).

    Google Scholar 

  14. S. Geller, Acta Crystallogr. 10, 243 (1957).

    Google Scholar 

  15. S. Geller, Acta Crystallogr. 10, 248 (1957).

    Google Scholar 

  16. M. A. Gilleo, Acta Crystallogr. 10, 161 (1957).

    Article  Google Scholar 

  17. Y. Ishikawa and S. Akimoto, J. Phys. Soc. Jpn. 12, 1083 (1957).

    Google Scholar 

  18. M. Marezio, Trans. Am. Crystallogr. Assoc. No. 5 (1969), p. 29.

  19. K. P. Belov and I. S. Lyubutin, Zh. Éksp. Teor. Fiz. 49, 747 (1965) [Sov. Phys. JETP 22, 518 (1965)].

    Google Scholar 

  20. S. L. Ruby, B. E. Evans, and S. S. Hafner, Solid State Commun. 6, 277 (1968).

    Article  Google Scholar 

  21. B. J. Evans and L. J. Swartzendruber, Phys. Rev. B 6, 233 (1972).

    ADS  Google Scholar 

  22. P. B. Fabrichnyii, ZhVKhO 30, 143 (1985).

    Google Scholar 

  23. N. L. Huang, R. Orbach, E. Simanec, J. Owen, and D. R. Taylor, Phys. Rev. 156, 383 (1967).

    Article  ADS  Google Scholar 

  24. G. A. Savatzky and F. Van der Woude, J. Phys. 35, N C6, 47 (1974).

    Google Scholar 

  25. F. Van der Woude and G. A. Sawatsky, Phys. Rev. B 4, 3159 (1971).

    ADS  Google Scholar 

  26. A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Hyperfine Interact. 3, 429; 5, 13 (1977).

    Article  Google Scholar 

  27. C. Boekema, F. Van der Woude, and G. A. Sawatzky, Int. J. Magn. 3, 341 (1972).

    Google Scholar 

  28. P. Freund, J. Owen, and B. F. Hahn, J. Phys. C: Solid State Physics 6, L139 (1973).

    ADS  Google Scholar 

  29. D. C. Tofield and B. E. F. Fender, J. Phys. Chem. Solids 31, 2741 (1970).

    Google Scholar 

  30. P. B. Fabrichnyii, Izv. Akad. Nauk SSSR Ser. Fiz. 50, 2310 (1986).

    Google Scholar 

  31. P. B. Fabrichnyii, E. V. Lamykin, A. M. Babeshkin, and A. N. Nesmeyanov, Fiz. Tverd. Tela 13, 3417 (1971) [Sov. Phys. Solid State 13, 2874 (1971)].

    Google Scholar 

  32. Y. Miyahara and S. Iida, J. Phys. Soc. Jpn. 37, 1248 (1974).

    Google Scholar 

  33. A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Hyperfine Interact. 1, 265 (1975).

    Article  Google Scholar 

  34. J. K. Lees and P. A. Flinn, J. Chem. Phys. 48, 882 (1968).

    Google Scholar 

  35. K. Motida and S. Miyahara, J. Phys. Soc. Jpn. 28, 1188 (1970).

    Google Scholar 

  36. I. S. Lyubutin and Yu. S. Visnyakov, Kristallografiya 17, 960 (1972) [Sov. Phys. Crystall. 17, 847 (1972)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1070–1084 (March 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubutin, I.S., Dmitrieva, T.V. & Stepin, A.S. Dependence of exchange interactions on chemical bond angle in a structural series: Cubic perovskite-rhombic orthoferrite-rhombohedral hematite. J. Exp. Theor. Phys. 88, 590–597 (1999). https://doi.org/10.1134/1.558833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558833

Keywords

Navigation