Skip to main content
Log in

Crystal and molecular structure of complex compound [Fe3O(CH3COO)6(H2O)3]2[ZnCl4] ⋅ 2H2O

  • Structures of Coordination Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The X-ray crystal structure of trinuclear iron acetate [Fe3O(CH3COO)6(H2O)3]2 [ZnCl4] ⋅ 2H2O was determined. The crystal has a ionic structure. It is monoclinic, a = 25.363(7), b = 14.533(4), c = 15.692(4) Å, β = 103.11(2)°, space group C2/c, and R = 0.0685. The structure of the cationic complex [Fe3O(CH3COO)6(H2O)3]+ is typical of trinuclear iron(III) compounds containing a μ3-O bridge: the iron atoms are situated at the vertices of an almost equilateral triangle with the O atom at the center. Each Fe atom is coordinated by four O atoms of bridging carboxy groups, the μ3-bridging O atom, and the water molecule in the trans position to the latter O atom. Mössbauer spectroscopy evidence indicates the high-spin state (S = 5/2) of the iron(III) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Porai-Koshits, Itogi Nauki Tekh., Ser.: Kristallokhim. 15, 3 (1981).

    Google Scholar 

  2. B. O. West, Polyhedron 4, 219 (1989).

    Google Scholar 

  3. E. L. Muettertis, Catal. Rev. 23(2), 69 (1981).

    Google Scholar 

  4. R. C. Mehrota and R. Bohra, Metal Carboxylates (Academic Press, London, 1983).

    Google Scholar 

  5. R. D. Cannon and R. P. White, Progr. Inorg. Chem. 36, 196 (1988).

    Google Scholar 

  6. S. I. Lippard, Angew. Chem. Int. Ed. Engl. 27, 344 (1988).

    Article  Google Scholar 

  7. B. Vincent, G. L. Oliver-Lilley, and B. A. Averill, Chem. Rev. 90(8), 1447 (1990).

    Article  Google Scholar 

  8. R. R. Crichton, Inorganic Biochemistry of Iron Metabolism (Harvard, New York, 1991).

  9. K. Anzenhofer and J. J. de Boer, Rec. Trav. Chim. Pays-Bas 88(3), 286 (1969).

    Google Scholar 

  10. K. Wieghardt, K. Pohl, I. Jibril, and C. Huttner, Angew. Chem. 96, 66 (1984).

    Google Scholar 

  11. K. L. Taft, G. C. Papaefthymiou, and S. J. Lippard, Science 259, 1302 (1993).

    ADS  Google Scholar 

  12. W. Micklitz and S. J. Lippard, J. Am. Chem. Soc. 111(17), 6856 (1989).

    Article  Google Scholar 

  13. A. K. Powell, S. L. Heath, and D. Gatteschi, J. Am. Chem. Soc. 117(9), 2491 (1995).

    Article  Google Scholar 

  14. C. I. Turta, S. G. Shova, and F. A. Spatar’, Zh. Strukt. Khim. 35(2), 112 (1994).

    Google Scholar 

  15. T. Glowiak, M. Kubiak, T. Szymanska-Buzar, and B. Jezowska-Tyzebiatowska, Acta Crystallogr., Sect. B 33, 3106 (1977).

    Google Scholar 

  16. S. Shova, C. Turta, I. Cadelńic, and V. Meriacre, in Proceedings of the Conference on Chemistry and Chemical Technology, Bucharest, Romania, 1997 (Bucharest, 1997), Vol. 1, p. 1.

    Google Scholar 

  17. S. G. Shova, I. G. Cadelńic, and M. Gdaniec, Zh. Strukt. Khim. 39(5), 917 (1999).

    Google Scholar 

  18. I. Cadelńic, S. Shova, and Yu. A. Simonov, Pol. J. Chem. 71, 501 (1997).

    Google Scholar 

  19. G. M. Sheldrick, Acta Crystallogr., Sect. A 46, 467 (1990).

    Article  Google Scholar 

  20. G. M. Sheldrick, SHELXL93: Program for the Refinement of Crystal Structures (Univ. of Göttingen, Göttingen, 1993).

    Google Scholar 

  21. C. E. Anson, J. P. Bourke, and R. D. Cannon, Inorg. Chem. 36, 1265 (1997).

    Article  Google Scholar 

  22. V. M. Lynch, J. M. Sibert, J. L. Sessler, and B. E. Davis, Acta Crystallogr., Sect. C 47(4), 866 (1991).

    Google Scholar 

  23. T. Sato and F. Ambe, Acta Crystallogr., Sect. C 52, 3005 (1996).

    Google Scholar 

  24. S. G. Shova, I. G. Cadelńic, and T. C. Jovmir, Koord. Khim. 23(9), 672 (1997) [J. Coord. Chem. 23, 629 (1997)].

    Google Scholar 

  25. C. I. Turta, A. G. Lézéresku, and Yu. A. Simonov, Koord. Khim. 22(1), 45 (1996) [J. Coord. Chem. 22, 42 (1996)].

    Google Scholar 

  26. F. Degang, W. Guoxiong, T. Wenxia, and Y. Kaibei, Polyhedron 12(20), 2459 (1993).

    Article  Google Scholar 

  27. Chemical Applications of Mössbauer Spectroscopy, Ed. by V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968; Mir, Moscow, 1970).

    Google Scholar 

  28. R. V. Pound and G. A. Rebka, Phys. Rev. Lett. 4(5–6), 274 (1960).

    ADS  Google Scholar 

  29. F. A. Spatar’, A. T. Lézéresku, and C. I. Turta, Zh. Obshch. Khim. 66(1), 12 (1996).

    Google Scholar 

  30. F. A. Spatar’, V. M. Meriakre, and V. E. Zubareva, Koord. Khim. 22(3), 188 (1996) [J. Coord. Chem. 22, 176 (1996)].

    Google Scholar 

  31. G. Filotti, V. Meriacre, and A. Avramescu, in Proceedings of ICAME-95 (Rimini, Italy, 1995), O1–D9.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 45, No. 3, 2000, pp. 458–464.

Original Russian Text Copyright © 2000 by Shova, Cadelnic, Gdaniec, Simonov, Jovmir, Filoti, Bulhac, Turta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shova, S.G., Cadelnic, I.G., Gdaniec, M. et al. Crystal and molecular structure of complex compound [Fe3O(CH3COO)6(H2O)3]2[ZnCl4] ⋅ 2H2O. Crystallogr. Rep. 45, 416–421 (2000). https://doi.org/10.1134/1.171209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.171209

Keywords

Navigation