Skip to main content
Log in

Hyperfine coupling to β-muonium and the theory of hyperconjugation

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The theory of hyperconjugation, orσ-π delocalization, which has been very successful in explaining the properties of carbocations, and the ESR parameters for a range of radicals, is invoked to explain two aspects of the results for muonated radicals. One is the commonly observed fact that the reduced muon hyperfine coupling constants in a range of radicals are greater by a factor of ca. 1.2 than the corresponding proton coupling constants. The other is the preference of C-Mu bonds in positionsβ to radical centers to occupy an eclipsed site which maximizesσ-π overlap.

This theory, which has been largely dismissed by others, still seems to be an attractive and simple explanation of both phenomena. It is suggested that one alternative theory, which is termed the “zeropoint energy theory,” is closely linked to the hyper-conjugation theory proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roduner, E.; Fischer, H.Chem. Phys. 1981,54, 261.

    Google Scholar 

  2. Ramos, M. J.; McKenna, D.; Webster, B. C.; Roduner, E.J. Chem. Soc. Faraday Trans. 1 1984,80, 255; 267.

    Google Scholar 

  3. Roduner, E. InMuons and Pions in Materials Research; Chappert, J.; Grynszpan, R. I., Eds.; Elsevier: Amsterdam, 1959, p. 209.

    Google Scholar 

  4. Symons, M. C. R.J. Chem. Soc. 1959, 277.

  5. Heller, C.; McConnell, H. M.J. Chem. Phys. 1960,32, 1535.

    Google Scholar 

  6. Symons, M. C. R.Tetrahedron 1962,L8, 333.

    Google Scholar 

  7. Schleyer, P. von R.; Carneiro, J. W. de M.J. Am. Chem. Soc. 1989,111, 5475.

    Google Scholar 

  8. Symons, M. C. R.Hyperfine Interact. 1984,17, 771.

    Google Scholar 

  9. Webster, B. C.; Macrae, R.Chem. Phys. Lett. 1988,150, 18.

    Google Scholar 

  10. Roduner, E.Lecture Notes in Chemistry,1988,49, 1; Roduner, E.; Reid, I. D.Isr. J. Chem. 1989,29, 3.

    Google Scholar 

  11. Percival, P. W.; Kiefl, R. F.; Kreitzman, S. R.; Garner, D. M.; Cox, S. F. J.; Luke, G. M.; Brewer, J. H.; Nishiyama, K.; Venkateswaran, K.Chem. Phys. Lett. 1987,133, 465.

    Google Scholar 

  12. Whiffen, D. H.Mol. Phys. 1963,6, 223.

    Google Scholar 

  13. Geeson, D. A.; Symons, M. C. R.; Roduner, E.; Fischer, H.; Cox, S. F.J. Chem. Phys. Lett. 1985,116, 186.

    Google Scholar 

  14. Bernardi, F.; Bottoni, A.; Fossey, J.Theoret. Chim. Acta 1982,61, 251.

    Google Scholar 

  15. Claxton, T. A.; Graham, A. M.J. Chem. Soc., Chem. Commun. 1987, 1167.

  16. Symons, M. C. R.Nature (London) 1969,222, 1123.

    Google Scholar 

  17. Prior, W. A.Free Radicals; McGraw-Hill: New York, 1966.

    Google Scholar 

  18. Wood, D. E.; Sprecher, R. F.Mol. Phys. 1973,26, 1311.

    Google Scholar 

  19. Claxton, T. A.; Platt, E.; Symons, M. C. R.Mol. Phys. 1976,32, 1321.

    Google Scholar 

  20. Griller, D.; Ingold, K. U.; Krusic, P. J.; Fischer, H.J. Am. Chem. Soc. 1978,100, 6750.

    Google Scholar 

  21. Herzberg, G.; Shoosmith, J.Can. J. Phys. 1956,34, 523.

    Google Scholar 

  22. Amano, T.; Bernath, P. F.; Yamada, C.; Endo, Y.; Hirota, E.J. Chem. Phys. 1982,77, 5284.

    Google Scholar 

  23. Yamada, C.; Hirota, E.; Kawaguchi, K.J. Chem. Phys. 1981,75, 5256.

    Google Scholar 

  24. Kelly, P. B.; Westre, S. G.Chem. Phys. Lett. 1988,151, 253.

    Google Scholar 

  25. Holt, P. L.; McCurdy, K. E.; Weisman, R. B.; Adams, J. S.; Engel, P. S.J. Chem. Phys. 1984,81, 3349.

    Google Scholar 

  26. Miller, J. T.; Burton, K. A.; Weisman, R. B.; Wu, W-X.; Engel, P. S.Chem. Phys. Lett. 1989,158, 179.

    Google Scholar 

  27. Symons, M. C. R.Chemical and Biochemical Aspects of Electron Spin Resonance Spectroscopy; Van Nostrand Reinhold: Wokingham, Berkshire, UK, 1978.

    Google Scholar 

  28. Pacansky, J.; Confal, H.J. Chem. Phys. 1980,72, 5285.

    Google Scholar 

  29. El-Raqabah, A.; Symons, M. C. R. Unpublished results.

  30. Venkateswaran, K.; Barnabas, M. V.; Kiefl, R. F.; Stadlbauer, J. M.; Walker, D. C.J. Phys. Chem. 1989,93, 388.

    Google Scholar 

  31. Brivati, J. A.; Root, K. D. J.; Symons, M. C. R.; Tinling, D. J. A.J. Chem. Soc., A 1969, 1942.

  32. Hatano, K.; Shimamoto, N.; Katsu, T.; Fujita, Y.Bull. Chem. Soc. Jpn. 1974,47, 4.

    Google Scholar 

  33. Toriyama, K.; Iwasaki, M.J. Am. Chem. Soc. 1979,101, 2516.

    Google Scholar 

  34. Danen, W. C.; West, C. T.J. Am. Chem. Soc. 1971,93, 5582.

    Google Scholar 

  35. Hasegawa, A.; McConnachie, G. D. G.; Symons, M. C. R.J. Chem. Soc., Faraday Trans. 1 1984,80, 1005.

    Google Scholar 

  36. Nelson, D. J.; Petersen, R. L.; Symons, M. C. R.J. Chem. Soc., Perkin Trans. 2 1977, 2005.

  37. Symons, M. C. R.J. Chem. Soc., Perkin Trans. 2 1973, 797.

  38. Brivati, J. A.; Hulme, R.; Symons, M. C. R.Proc. Chem. Soc. 1961, 384.

  39. Parkes, D. A.; Paul, D. M.; Quinn, C. P.J. Chem. Soc., Faraday Trans. 1 1976,72, 1935.

    Google Scholar 

  40. Rosenbaum, J.; Symons, M. C. R.Mol. Phys. 1960,3, 205.

    Google Scholar 

  41. Cox, S. F. J.; Claxton, T. A.; Symons, M. C. R.Radiat. Phys. Chem. 1986,28, 107.

    Google Scholar 

  42. Percival, Paul W.; Brodovitch, J.-C.; Leung, S.-K.; Yu, D.; Kiefl, R. F.; Garner, D. M.; Arseneau, D. J.; Fleming, D. G.; Gonzalez, A.; Kempton, J. R.; Senba, M.; Venkateswaran, K.; Cox, S. F.J. Chem. Phys. Lett. 1989,163, 241.

    Google Scholar 

  43. Symons, M. C. R.Chem. Soc. Rev. 1984, 393; Shiotani, M.Magn. Reson. Rev. 1987,12, 333.

    Google Scholar 

  44. Knight, L. B.; Stoodman, J.; Feller, D.; Davidson, E. R.J. Am. Chem. Soc. 1984,106, 3701.

    Google Scholar 

  45. Toriyama, K.; Nonome, K.; Iwasaki, M.J. Chem. Phys. 1982,77, 5891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symons, M.C.R. Hyperfine coupling to β-muonium and the theory of hyperconjugation. Struct Chem 2, (225)433–(231)439 (1991). https://doi.org/10.1007/BF00672236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00672236

Keywords

Navigation