Skip to main content
Log in

Structure and stability of the tetrahydridoselenonium dication, SeH4 2+

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio molecular orbital theory with triple-zeta-valence plus polarization basis sets and with electron correlation incorporated at the fourth-order Møller-Plesset level has been used to study the tetrahydridoonium dications, OH4 2+, SH4 2+, and SeH4 2+. The tetrahydridoselenonium dication SeH4 2+ is predicted to have a tetrahedral (T d )structure, similar to OH4 2+ and SH4 2+, with short bonds to hydrogen (1.483 Å). Although deprotonation of SeH4 2+ is thermodynamically favored Cby 104 kJ mol−1), such a reaction is inhibited by a large barrier (240kJmol−1]. Thus, SeH4 2+ lies in a deep potential well and as an isolated species should have a long lifetime in the gas phase. The estimated heat of formation, ΔH° f , for SeH4 2+ is very high (2483 kJ mol−1], as is the case for OH4 2+ and SH4 2+. Of the group IV onium dications (OH4 2+, SH4 2+, and SeH4 2+), SeH4 2+ displays the greatest kinetic and thermodynamic stability toward proton loss. Substantial solvent stabilization is required in order to generate SeH4 2+ in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review, see: Koch, W.; Schwarz, H. InStructure/Reactivity and Thermochemistry of Ions, Ausloos, P.; Lias, S. G.; Eds.; Reidel: Dordrecht, 1987.

    Google Scholar 

  2. Koch, W.; Heinrich, N.; Schwarz, H.; Maquin, F.; Stahl, D.Int. J. Mass Spectrom. Ion Processes 1985,67, 305.

    Google Scholar 

  3. Olah, G. A.; Prakash, G. K. S.; Barzaghi, M.; Lammertsma, K.; Schleyer, P. v. R.; Pople, J. A.J. Am. Chem. Soc. 1986,108, 1032.

    Google Scholar 

  4. Olah, G. A.; DeMember, J. R.; Mo, Y. K.; Svoboda, J. J.; Schilling, P.; Olah, J. A.J. Am. Chem. Soc. 1974,96, 884.

    Google Scholar 

  5. Bollinger, J. C.; Faure, R.; Yvernault, T.; Stahl, D.Chem. Phys. Lett. 1987,140, 579.

    Google Scholar 

  6. Olah, G. A.; Prakash, G. K. S.; Marcelli, M.; Lammertsma, K.J. Phys. Chem. 1988,92, 878.

    Google Scholar 

  7. Laali, K.; Chen, H. Y.; Gerzina, R. J.J. Organomet. Chem. 1988,348, 199.

    Google Scholar 

  8. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A.Ab Initio Molecular Orbital Theory; John Wiley: New York, 1986.

    Google Scholar 

  9. Nobes, R. H.; Smith, B. J.; Riggs, N. V.; Wong, M. W. Unpublished.

  10. Baker, J.J. Comp. Chem. 1986,7, 385.

    Google Scholar 

  11. Baker, J.J. Comp. Chem. 1987,8, 563.

    Google Scholar 

  12. Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; DeFrees, D. J.; Whiteside, R. A.; Fox, D. J.; Fluder, E. M.; Pople, J. A.GAUSSIAN 86; Carnegie-Mellon University: Pittsburgh, PA 15213.

  13. Møller, C.; Plesset, M. S.Phys. Rev. 1934,46, 618

    Google Scholar 

  14. Pople, J. A.; Binkley, J. S.; Seeger, R.Int. J. Quantum Chem. Symp. 1976,10, 1.

    Google Scholar 

  15. Wong, M. W.; Gill, P. M. W.; Nobes, R. H.; Radom, L.J. Phys. Chem. 1988,92, 4875.

    Google Scholar 

  16. Dunning, T. H., Jr.J. Chem. Phys. 1977,66, 1382.

    Google Scholar 

  17. Harmony, M. D.; Laurie, V. W.; Kuezkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G.J. Phys. Chem. Ref. Data 1979,8, 619.

    Google Scholar 

  18. Gill, P. M. W.; Radom, L.J. Am. Chem. Soc. 1988,110, 5311.

    Google Scholar 

  19. Pople, J. A.; Schlegel, H.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W.J. Int. J. Quantum Chem. Symp. 1981,15, 269.

    Google Scholar 

  20. Krishnan, R.; Pople, J. A.Int. J. Quantum Chem. 1978,14, 91.

    Google Scholar 

  21. Krishnan, R.; Frisch, M. J.; Pople, J. A.J. Chem. Phys. 1980,72, 4244.

    Google Scholar 

  22. Cooks, R. G.; Ast, T.; Beynon, J. H.Int. J. Mass Spectrom. Ion Phys. 1973,11, 490.

    Google Scholar 

  23. Ast, T.Adv. Mass Spectrom. 1980,8A, 555.

    Google Scholar 

  24. The experimental heat of formation of H+ is 1528 kJ mol−1: Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T.J. Phys. Chem. Ref. Data 1977,6, Suppl. 1.

    Google Scholar 

  25. Lias, S. G.; Liebman, J. F.; Levin, R. D.J. Phys. Chem. Ref. Data 1984,13, 695.

    Google Scholar 

  26. Gill, P. M. W.; Radom, L.Chem. Phys. Lett. 1987,136, 294;

    Google Scholar 

  27. Gill, P. M. W.; Radom, L.Chem. Phys. Lett. 1988,147, 213;

    Google Scholar 

  28. Radom, L.; Gill, P. M. W.; Wong, M. W.Int. J. Quantum Chem. Symp. 1988,22, 567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.W., Radom, L. Structure and stability of the tetrahydridoselenonium dication, SeH4 2+ . Struct Chem 1, 13–18 (1990). https://doi.org/10.1007/BF00675779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00675779

Keywords

Navigation