Skip to main content
Log in

Branched-chain aminotransferase deficiency in Chinese hamster cells complemented by two independent genes on human chromosomes 12 and 19

  • Published:
Somatic Cell Genetics

Abstract

Branched-chain aminotransferase (BCT) catalyzes the reversible transamination of the branched-chain α-keto acids to the branched-chainl-amino acids. Since branched-chainl-amino acids (l-isoleucine,l-leucine, andl-valine) are essential for cell growth, cells which lack BCT were unable to proliferate in media containing α-keto acids in place of the correspondingl-amino acids. CHW-1102, a Chinese hamster cell line, lacks BCT and does not grow in α-keto acid media. Somatic cell hybrids were made by the fusion of CHW-1102 (HPRT) with several human cell lines and isolated on HAT medium. Growth assays of hybrid clones on α-keto acid selection media independent of the HAT selection medium indicated two cell hybrid phenotypes: either (1) the hybrid clone, like the parental CHW-1102, could not utilize α-keto acid media, or (2) the hybrid could proliferate on all three α-keto acid media. The ability of hybrid cells to proliferate on α-keto acid media correlated with the presence of either of two human genes which independently complemented the Chinese hamster deficiency. Two human genes, BCT1 assigned to chromosome 12 and BCT2 assigned to chromosome 19, were demonstrated to code for the expression of two molecular forms of BCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ichihara, A. (1975).Ann. N.Y. Acad. Sci. 259:437–354.

    Google Scholar 

  2. Rose, W.C. (1937).Science 86:298–300.

    Google Scholar 

  3. Eagle, H. (1955).Science 122:501–504.

    PubMed  Google Scholar 

  4. Naylor, S.L., Busby, L.L., and Klebe, R.J. (1976).Somat. Cell Genet. 2:93–111.

    PubMed  Google Scholar 

  5. Naylor, S.L., Townsend, J.K., and Klebe, R.J. (1979).Somat: Cell Genet. 5:271–277.

    Google Scholar 

  6. Littlefield, J.W. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  7. Gee, P.A., Ray, M., Mohandas, T., Douglas, G.R., Palser, H., Richardson, B.J., and Hamerton, J.L. (1974).Cytogenet. Cell Genet. 13:437–447.

    PubMed  Google Scholar 

  8. Klebe, R.J., Chen, T.R., and Ruddle, F.H. (1970).J. Cell Biol. 45:74–82.

    PubMed  Google Scholar 

  9. Davidson, R.L., and Gerald, P.S. (1976).Somat. Cell Genet. 2:165–176.

    PubMed  Google Scholar 

  10. DeLuca, C., Brown, J.A., and Shows, T.B. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:1957–1961.

    PubMed  Google Scholar 

  11. Ichihara, A., and Koyama, E. (1966).J. Biochem. 59:160–169.

    PubMed  Google Scholar 

  12. Naylor, S.L., Klebe, R.J., and Shows, T.B. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:6159–6162.

    PubMed  Google Scholar 

  13. Naylor, S.L., Shows, T.B., and Klebe, R.J. (1979).Somat. Cell Genet. 5:11–21.

    PubMed  Google Scholar 

  14. Shows, T.B., and Brown, J.A. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:2125–2129.

    PubMed  Google Scholar 

  15. Aki, K., Yokojima, A., and Ichihara, A. (1969).J. Biochem. 65:539–544.

    PubMed  Google Scholar 

  16. Thompson, L.H., and Baker, R.M: (1973).Methods Cell Biol. 6:209–281.

    PubMed  Google Scholar 

  17. Chu, E.H.Y., and Powell, S.S. (1976).Adv. Human Genet. 7:189–253.

    Google Scholar 

  18. Kao, F.-T., Chasin, L., and Puck, T.T. (1969).Proc. Natl. Acad. Sci. U.S.A. 64:1284–1291.

    PubMed  Google Scholar 

  19. Kao, F.-T., and Puck, T.T. (1972).J. Cell. Physiol. 80:41–50.

    PubMed  Google Scholar 

  20. Naylor, S.L., and Klebe, R.J. (1977).Biochem. Genet. 15:1193–1211.

    PubMed  Google Scholar 

  21. Aki, K., Ogawa, K., and Ichihara, A. (1968).Biochim. Biophys. Acta 159:276–284.

    PubMed  Google Scholar 

  22. Jones, C., and Moore, E. (1976).Somat. Cell Genet. 2:235–244.

    PubMed  Google Scholar 

  23. Jones, C., and Moore, E. (1979).Cytogenet. Cell Genet. 25:168.

    Google Scholar 

  24. Wada, Y., Tada, K., Minagawa, A., Yoshida, T., Morikawa, T., and Okamura, T. (1963).Tohoku J. Exp. Med. 81:46–55.

    PubMed  Google Scholar 

  25. Human Gene Mapping Workshop V (1979).Cytogenet. Cell Genet. 25.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naylor, S.L., Shows, T.B. Branched-chain aminotransferase deficiency in Chinese hamster cells complemented by two independent genes on human chromosomes 12 and 19. Somat Cell Mol Genet 6, 641–652 (1980). https://doi.org/10.1007/BF01538643

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538643

Keywords

Navigation