Skip to main content
Log in

An Isolated In-Situ Rat Head Perfusion Model for Pharmacokinetic Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To develop a viable, single pass rat head perfusion modeluseful for pharmacokinetic studies.

Methods. A viable rat head preparation, perfused with MOPS-bufferedRinger's solution, was developed. Radiolabelled markers (red bloodcells, water and sucrose) were injected in a bolus into the internalcarotid artery and collected from the posterior facial vein over 28minutes. The double inverse Gaussian function was used to estimatethe statistical moments of the markers.

Results. The viability of the perfusion was up to one hour, with optimalperfusate being 2% bovine serum albumin at 37°C, pH 7.4. Thedistribution volumes for red blood cells, sucrose and water (from all studies,n = 18) were 1.0 ± 0.3ml, 6.4 ± 4.2ml and 18.3 ± 11.9ml, respectively.A high normalised variance for red blood cells (3.1 ± 2.0) suggestsa marked vascular heterogeneity. A higher normalised variance forwater (6.4 ± 3.3) is consistent with additional diffusive/permeabilitylimitations.

Conclusions. Analysis of the physiological parameters derived fromthe moments suggested that the kinetics of the markers were consistentwith distribution throughout the head (weight 25g) rather than justthe brain (weight 2g). This model should assist in studying solutepharmacokinetics in the head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. H. Oldendorf. Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am. J. Physiol. 221:1629-1639 (1971).

    Google Scholar 

  2. Y. Takasato, S. I. Rapoport, and Q. R. Smith. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:H484-H493 (1984).

    Google Scholar 

  3. T. Sakane, M. Nakatsu, A. Yamamoto, M. Hashida, H. Sezaki, S. Yamashita, and T. Nadai. Assessment of drug disposition in the perfused rat brain by statistical moment analysis. Pharm. Res. 8:683-689 (1991).

    Google Scholar 

  4. C. Crone. The permeability of brain capillaries to non-electrolytes. Acta. Physiol. Scand. 64:407-417 (1965).

    Google Scholar 

  5. K. Ohno, K. D. Pettigrew, and S. I. Rapoport. Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am. J. Physiol. 235:H299-H307 (1978).

    Google Scholar 

  6. M. E. Raichle, J. O. Eichling, M. G. Straatman, M. J. Welch, K. B. Larson, and M. M. Ter-Pogossian. Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water. Am. J. Physiol. 230:543-552 (1976).

    Google Scholar 

  7. C. S. Patlak and J. D. Fenstermacher. Measurements of dog bloodbrain transfer constants by ventriculocisternal perfusion. Am. J. Physiol. 229:877-884 (1975).

    Google Scholar 

  8. R. K. Andjus, K. Suhara, and H. A. Sloviter. An isolated, perfused rat brain preparation, its spontaneous and stimulated activity. J. Appl. Physiol. 22:1033-1039 (1967).

    Google Scholar 

  9. S. Webb, R. J. Ott, and S. R. Cherry. Quantitation of blood-brain barrier permeability by positron emission tomography. Phys. Med. Biol. 34:1767-1771 (1989).

    Google Scholar 

  10. H. Benveniste. Brain microdialysis. J. Neurochem. 52:1667-1679 (1989).

    Google Scholar 

  11. I. G. Kassissia, C. A. Goresky, C. P. Rose, A. J. Schwab, A. Simard, P.-M. Huet, and G. G. Bach. Tracer oxygen distribution is barrier-limited in the cerebral microcirculation. Circ. Res. 77:1201-1211 (1995).

    Google Scholar 

  12. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. J. Pharmacokin. Biopharm. 14:227-261 (1986a).

    Google Scholar 

  13. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: comparison of stochastic to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity and systemic recycling on hepatic elimination. J. Pharmacokin. Biopharm. 16:41-83 (1988).

    Google Scholar 

  14. M. S. Roberts, S. Fraser, A. Wagner, and L. McLeod. Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: 1. Effect of changes in perfusate flow and albumin concentration on sucrose and taurocholate. J. Pharmacokin. Biopharm. 18:209-234 (1990).

    Google Scholar 

  15. Z-Y. Wu, L. P. Rivory, and M. S. Roberts. Physiological pharmacokinetics of solutes in the isolated perfused rat hindlimb: Characterisation of physiology with changing perfused flow, perfusate protein content and temperature. J. Pharmacokin. Biopharm. 21:653-688 (1993).

    Google Scholar 

  16. Z-Y. Wu, S. E. Cross, and M. S. Roberts. Influence of physico-chemical parameters of solutes and perfusate flow rates on their distribution in the isolated perfused rat hindlimb using the impulse response technique. J. Pharm. Sci. 84:1020-1027 (1995).

    Google Scholar 

  17. M. S. Roberts, Z. Y. Wu, L. P. Rivory, B. M. Smithers, W. S. Egerton, and M. Weiss. Relative dispersion of intravascular transit times during isolated human limb perfusions for recurrent melanoma. Br. J. Clin. Pharmacol. 44:347-351 (1997).

    Google Scholar 

  18. M. Weiss and M. S. Roberts. Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: application of a stochastic model to the rat hindlimb. J. Pharmacokin. Biopharm. 24:173-196 (1996).

    Google Scholar 

  19. M. Weiss, C. Stedtler, and M. S. Roberts. On the validity of the dispersion model of hepatic drug elimination when intravascular transit time densities are longtailed. Bull. Math. Biol. 59:911-929 (1997).

    Google Scholar 

  20. K. Cheung, P. E. Hickman, J. M. Potter, N. I. Walker, M. Jericho, R. Haslam, and M. S. Roberts. An optimised model for rat liver perfusion studies. J. Surg. Res. 66:81-89 (1996).

    Google Scholar 

  21. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 2. Steady-state considerations-influence of hepatic blood flow, binding within blood and hepatocellular enzyme activity. J. Pharmacokin. Biopharm. 14:261-288 (1986b).

    Google Scholar 

  22. J. E. Preston, H. Al-Sarraf, and M. B. Segal. Permeability of the developing blood-brain barrier to 14C-mannitol using the rat in situ brain perfusion technique. Dev. Brain. Res. 87:69-76 (1995).

    Google Scholar 

  23. J. K. Kjekshus, P. Vaagenes, and O. Hetland. Assessment of cerebral injury with spinal fluid creatine kinase (CSF-CK) in patients after cardiac resuscitation. Scand. J. Clin. Lab. Invest. 40:437-444 (1980).

    Google Scholar 

  24. M. R. Goe and T. H. Massey. Assessment of neurologic damage: creatine kinase-BB assay after cardiac arrest. Heart Lung 17:247-253 (1988).

    Google Scholar 

  25. D. Fiat and S. Kang. Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 17 O in vivo NMR spectroscopy and magnetic resonance imaging. Part 2. Determination of CMRO2 for the rat by 17 O NMR, and CMRO2, rCBF and the partition coefficient for the cat by 17 O MRI. Neurol. Res. 15:7-22 (1993).

    Google Scholar 

  26. W. H. Oldendorf and L. D. Braun. [3H]Tryptamine and 3H-water as diffusible internal standards for measuring brain extraction of radio-labeled substances following carotid injection. Brain Res. 113:219-224 (1976).

    Google Scholar 

  27. M. Weiss, L. N. Ballinger, and M. S. Roberts. Kinetic analysis of vascular marker distribution in perfused rat livers after regeneration following partial hepatectomy. J. Hepatol. 29:476-481 (1998).

    Google Scholar 

  28. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626-640 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, K.A., Mellick, G.D., Weiss, M. et al. An Isolated In-Situ Rat Head Perfusion Model for Pharmacokinetic Studies. Pharm Res 17, 127–134 (2000). https://doi.org/10.1023/A:1007500910566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007500910566

Navigation