Skip to main content
Log in

Distribution of a 20-Mer Phosphorothioate Oligonucleotide, CGP69846A (ISIS 5132), into Airway Leukocytes and Epithelial Cells Following Intratracheal Delivery to Brown-Norway Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the pulmonary distribution of CGP69846A (ISIS 5132), a phosphorothioate oligonucleotide, following intra-tracheal (i.t.) instillation into Brown-Norway rats.

Methods. The pharmacokinetic profile of [3H]-CGP69846A was investigated following i.t. instillation into both naïve and inflamed airways of Brown-Norway rats. The cellular distribution was determined using autoradiography, immunohistochemistry and flow cytometry/fluorescence microscopy, in inflamed airways.

Results. CGP69846A displayed a dose-dependent lung retention following i.t. administration which was unaffected by local inflammation. Autoradiography and immunohistochemistry showed distribution to alveolar macrophages, eosinophils, bronchial and tracheal epithelium and alveolar cells. Studies with [FITCJ-CGP69846A demonstrated a preferential association of oligonucleotide with leukocytes in bronchial lavage fluid of: macrophages > eosinophils = neutrophils > > lymphocytes.

Conclusions. The dose-dependency of lung retention together with cell-specific uptake suggests that the lung can be used as a local target for antisense molecules with potentially minimal systemic effects. Furthermore, the preferential targeting of macrophages and the airway epithelium by oligonucleotides may represent rational cellular targets for antisense therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. A. Dorr and D. L. Kisner. Antisense Oligonucleotides to protein kinase C-α and C-raf kinase: Rationale and clinical experience in patients with solid tumors. In S. T. Crooke (eds.), Antisense Research and Application, Springer, Heidelberg, 1998, pp. 463–476.

    Google Scholar 

  2. S. L. Hutcherson. Clinical antiviral activities. In S. T. Crooke (eds.), Antisense Research and Application, Springer, Hiedelberg, 1998, pp. 445–462.

    Google Scholar 

  3. W. R. Shanahan Jr. Properties of ISIS 2302, an inhibitor of intercellular adhesion molecule-1, in humans. In S. T. Crooke (eds.), Antisense Research and Application, Springer, Heidelberg, 1998, pp. 499–524.

    Google Scholar 

  4. S. Wu-Pong and P. R. Byron. Airway-to-biophase transfer of inhaled oligonucleotides. Adv. Drug Del. Rev. 19:47–71 (1996).

    Google Scholar 

  5. J. W. Nyce. Respirable antisense oligonucleotides as novel therapeutic agents for asthma and other pulmonary diseases. Exp. Opin. Invest. Drugs. 6:1149–1156 (1997).

    Google Scholar 

  6. B. R. Yacyshyn, M. B. Bowenyacyshyn, L. Jewell, J. A. Tami, C. F. Bennett, D. L. Kisner, and W. R. Shanahan Jr. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohns-Disease. Gastroenterology 114:1133–1142 (1998).

    Google Scholar 

  7. S. T. Crooke, M. J. Graham, J. E. Zuckerman, D. Brooks, B. S. Conklin, L. L. Cummins, M. J. Greig, C. J. Guinosso, D. Kornbrust, M. Manoharan, H. M. Sasmor, T. Schleich, K. L. Tivel, and R. H. Griffey. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. Pharmacol. Exp. Ther. 277:923–937 (1996).

    Google Scholar 

  8. J. A. Phillips, S. J. Craig, D. Bayley, R. A. Christian, R. Geary, and P. L. Nicklin. Pharmacokinetics, metabolism, and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (CGP 69846A) after intravenous and subcutaneous administration. Biochem. Pharmacol. 54:657–668 (1997).

    Google Scholar 

  9. J. W. Nyce and W. J. Metzger. DNA antisense therapy for asthma in an animal model. Nature 385:721–725 (1997).

    Google Scholar 

  10. B. P. Monia, P. Martin, and K-H. Altmann. Antisense oligonucleotide modulation of raf gene expression. WO 96-US8165 960531(US 95-463912 950605).

  11. M. J. Graham, S. M. Freier, R. M. Crooke, D. J. Ecker, R. N. Maslova, and E. A. Lesnik. Tritium labeling of antisense oligonucleotides by exchange with tritiated water. Nucleic Acids Res. 21:3737–3743 (1993).

    Google Scholar 

  12. J. M. Leeds, M. J. Graham, L. Truong, and L. Cummins. Quantification of phosphorothioate oligonucleotides in human plasma. Anal. Biochem. 235:36–43 (1996).

    Google Scholar 

  13. M. Butler, K. Stecker, and C. F. Bennett. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab Invest. 77:379–388 (1997).

    Google Scholar 

  14. P. L. Nicklin, D. Bayley, J. Giddings, S. J. Craig, L. Cummins, J. G. Hastewell, and J. A. Phillips. Pulmonary bioavailability of a phosphorothioate oligonucleotide (CGP 64128A): Comparison with other delivery routes. Pharm. Res. 15:583–591 (1998).

    Google Scholar 

  15. A. Steward, K. O. Hamilton, and P. L. Nicklin. Co-administration of polyanions with a phosphorothioate oligodeoxynucleotide (CGP 69846A): a role for the scavenger receptor in its in vivo disposition. Biochem. Pharmacol. 56:509–516 (1998).

    Google Scholar 

  16. L. Kobzik. Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J.Immunol. 155:367–376 (1995).

    Google Scholar 

  17. B. Stringer, A. Imrich, and L. Kobzik. Lung epithelial cell (A549) interaction with unopsonized environmental particulates: quantitation of particle-specific binding and IL-8 production. Exp. Lung Res. 22:495–508 (1996).

    Google Scholar 

  18. R. E. Pitas. Expression of the acetyl low density lipoprotein receptor by rabbit fibroblasts and smooth muscle cells. Up-regulation by phorbol esters. J. Biol. Chem. 265:12722–12727 (1990).

    Google Scholar 

  19. R. E. Pitas, J. Boyles, R. W. Mahley, and D. M. Bissell. Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells. J.Cell Biol. 100:103–117 (1985).

    Google Scholar 

  20. G. Hartmann, A. Krug, A. Eigler, J. Moeller, J. Murphy, R. Albrecht, and S. Endres. Specific suppression of human tumor necrosis factor-alpha synthesis by antisense oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev. 6:291–299 (1996).

    Google Scholar 

  21. Y. Rojanasakul, W. Liang, and J. K. H. Ma. Targeted delivery of antisense oligonucleotides for selective inhibition of pulmonary fibrotic cytokines. Resp. Drug Del. 5:55–62 (1996).

    Google Scholar 

  22. G. Hartmann, A. Krug, M. Bidlingmaier, U. Hacker, A. Eigler, R. Albrecht, C. Strasburger, and S. Endres. Spontaneous and cationic lipid-mediated uptake of antisense oligonucleotides in human monocytes and lymphocytes. J. Pharmacol. Exp. Ther. 285:920–928 (1998).

    Google Scholar 

  23. M. F. Taylor, D. D. Weller, and L. Kobzik. Effect of TNF-alpha antisense oligomers on cytokine production by primary murine alveolar macrophages. Antisense. Nucleic. Acid. Drug Dev. 8:199–205 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danahay, H., Giddings, J., Christian, R.A. et al. Distribution of a 20-Mer Phosphorothioate Oligonucleotide, CGP69846A (ISIS 5132), into Airway Leukocytes and Epithelial Cells Following Intratracheal Delivery to Brown-Norway Rats. Pharm Res 16, 1542–1549 (1999). https://doi.org/10.1023/A:1015048419558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015048419558

Navigation