Skip to main content
Log in

Correlation of Plasma Clearance of 54 Extensively Metabolized Drugs Between Humans and Rats: Mean Allometric Coefficient of 0.66

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the distribution of allometric exponents for relationship of total plasma clearance of 54 extensively metabolized drugs, with wide-ranging linear clearance values, between humans and rats, to provide a rationale for the observed data, and to discuss potential significance of the findings.

Methods. Human and rat plasma clearance values of 54 drugs with markedly different physicochemical properties were obtained from the literature. Standard allometric analysis was performed for each drug using both rat and human data. Unbound vs. total plasma clearances were obtained for 15 out of 54 drugs and their correlations between humans and rats were compared.

Results. The mean ± SD of the allometric exponent for the 54 drugs studied is 0.660 ± 0.190. The median clearance ratio based on unit body weight is 7.41 and the median exponent is 0.645. Excluding two outliers the correlation coefficient of plasma clearance between humans and rats was 0.745 (p < 0.0001). For the 15 drugs, use of unbound plasma clearance approach seems to significantly improve the correlation coefficient compared to total plasma clearance (0.940 vs. 0.841).

Conclusions. The present study indicates that on average, humans and rats may eliminate extensively metabolized drugs at a rate similar to that expected from the allometric or body surface area relationship of basal metabolic rate between the two species. A simple statistical distribution hypothesis is used to rationalize the species difference in plasma drug clearance. Rat may serve as an useful animal model to predict (unbound) plasma clearance of drugs in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J. Pharmacokin. Biopharm. 8:165–176 (1980).

    Google Scholar 

  2. H. Boxenbaum. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Google Scholar 

  3. H. Boxenbaum and C. DiLea. First-Time-in-Human dose selection: Allometric thoughts and perpectives. J. Clin. Pharmacol. 35:957–966 (1995).

    PubMed  Google Scholar 

  4. T. Lave, S. Dupin, C. Schmitt, R. C. Chou, D. Jaeck, and P. Coassolo. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: Application to 10 extensively metabolized drugs. J. Pharm. Sci. 86:584–590 (1997).

    PubMed  Google Scholar 

  5. W. R. Chappell and J. Mordenti. Extrapolation of toxicological and pharmacological data from animals to humans. Adv. Drug Res. 20:1–116 (1991).

    Google Scholar 

  6. J. Mordenti, G. Gsaka, K. Garcia, K. Thomsen, V. Licko, and G. Meng. Toxicol. Appl. Pharmacol. 136:75–78 (1996).

    PubMed  Google Scholar 

  7. M. Bonati, R. Latini, and G. Tognoni. Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat and mouse. Drug Met. Rev. 15:1355–1383 (1984–85).

    Google Scholar 

  8. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats. J. Pharmacokin. Biopharm. 13:447–492 (1985).

    Google Scholar 

  9. P. J. McNamara, in “Pharmaceutical Bioequivalence” ed. by P. G. Welling, F. L. S. Tse and S. V. Dighe, Marcel Dekker, Inc., New York, pp. 267–299, 1991.

    Google Scholar 

  10. D. B. Campbell. Can allometric interspecies scaling be used to predict human kinetics? Drug Inform. J. 28:235–245 (1994).

    Google Scholar 

  11. I. Mahmood and J. D. Balian. Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica 26:887–895 (1996).

    PubMed  Google Scholar 

  12. P. H. Hinderling, C. DiLea, T. Koziol, and G. Millington. Comparative kinetics of sematilide in four species. Drug Metab. Dispos. 21:662–669 (1993).

    PubMed  Google Scholar 

  13. J. H. Lin. Species similarities and differences in pharmacokinetics. Drug Metab. Dispos. 23:1008–1021 (1995).

    PubMed  Google Scholar 

  14. W. L. Chiou and F. H. Hsu. Correlation of unbound plasma clearances of fifteen extensively metabolized drugs between humans and rats. Pharm. Res. 5:668–672 (1988).

    PubMed  Google Scholar 

  15. W. L. Chiou and Y. M. Choi. Unbound total (plasma) clearance approach in interspecies pharmacokinetics corelation: Theophyl-line-Cimetidine interaction. Pharm. Res. 8:1238–1239 (1995).

    Google Scholar 

  16. A. Hutchaleelaha, H. H. Chow, and M. M. Mayersohn. Comparative pharmacokinetics and interspecies scaling of amphotericin B in several mammalian species. J. Pharm. Pharmacol. 49:178–183 (1997).

    PubMed  Google Scholar 

  17. J. E. Riviere, T. Martin-Jimenez, S. F. Sundlof, and A. L. Craigmill. Interspecies allometric analysis of the comparative pharmacokinetics of 44 drugs across veterinary and laboratory animal species. J. Vet. Pharmacol. Ther. 20:453–463 (1997).

    PubMed  Google Scholar 

  18. F. E. Yates and P. N. Kugler. Similarity principles and intrinsic geometries: contrasting approaches to interspecies scaling. J. Pharm. Sci. 75:1019–1027 (1986).

    PubMed  Google Scholar 

  19. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga. Prediction of disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animals. J. Pharmacokin. Biopharm. 12:241–261 (1984).

    Google Scholar 

  20. J. M. Collins, C. K. Grieshaber, and B. A. Chabner. Pharmacologically guided phase I clinical trials based upon preclinical drug development. J. Nat. Cancer Inst. 82:1321–1326 (1990).

    PubMed  Google Scholar 

  21. W. S. Spector. Handbook of Biological Data, W. B. Saunder Co., Philadelphia, 1956.

    Google Scholar 

  22. L. Z. Benet, S. Øie, and J. B. Schwartz in “Goodman and Gilman's: The Pharmacological Basis of Therapeutics”, ed. by A. G. Gilman, J. G. Hardman, L. E. Limbard, P. B. Molinoff and R. W. Ruddon, 9th ed., McGraw Hill, New York, 1996.

    Google Scholar 

  23. J. H. Lin, M. Chiba, I. W. Chien, J. A. Nishime, and K. J. Vastag. Sex-dependent pharmacokinetics of indinavir: in vivo and in vitro evidence. Drug Metab. Dispos. 24:1298–1306 (1996).

    PubMed  Google Scholar 

  24. J. M. Scavone, H. Friedman, D. J. Greenblatt, and R. I. Shader. Effect of age, body composition, and lipid solubility on benzodiazepine tissue distribution in rats. Arzneimittelforschung 37:2–6 (1987).

    PubMed  Google Scholar 

  25. H. Matsushima, H. Kamimura, Y. Soeishi, T. Watanabe, S. Higuchi, and M. Tsunoo. Pharmacokinetics and plasma protein binding of tamsulosin hydrochloride in rats, dogs, and in humans. Drug Metab. Dispos. 26:240–245 (1998).

    PubMed  Google Scholar 

  26. A. R. Gascon, B. Calvo, R. M. Hernandez, A. Dominquez-Gill, and J. L. Pedraz. Interspecies scaling of theophylline-cimetidine pharmcokinetic interaction: interspecies scalling in pharmacokinetic interactions. Pharm. Res. 11:945–950 (1994).

    PubMed  Google Scholar 

  27. P. Manitpisitkul and W. L. Chiou. Intravenous verapamil kinetics in rats: marked arteriovenous concentration difference and comparison with humans. Biopharm. Drug Disposit. 14:555–566 (1993).

    Google Scholar 

  28. G. Levy, in “Integration of Pharmacokinetics, Pharmacodynamics, and Toxicokinetics in Rational Drug Development” ed. by A. Yacobi, J. P. Skelly, V. P. Shah and L. Z. Benet. Plenum Press, New York, pp. 7–13, 1993.

    Google Scholar 

  29. W. L. Chiou. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics. Clin. Pharmacokinet. 17:175–199 (1989).

    PubMed  Google Scholar 

  30. T. Lave, S. Dupin, M. Schmitt, M. Kapps, J. Meyer, B. Morgenroth, R. C. Chou, D. Jaeck, and P. Coassolo. Interspecies scaling of tolcapone, a new inhibitor of catechol-O-methyltransferase (COMT). Use of in vitro data from hepatocytes to predict metabolic clearances in animals and humans. Xenobiotica 26:839–851 (1996).

    PubMed  Google Scholar 

  31. W. L. Chiou, A. Barve, G. Robbie, S. M. Chung, T. C. Wu, and C. Ma. New drug development: Are man and rat alike in pharmacokinetics and pharmacodynamics? Proceedings of the 14th International Conference on Advanced Science and Technology, Naperville, Illinois, pp 394–400, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, W.L., Robbie, G., Chung, S.M. et al. Correlation of Plasma Clearance of 54 Extensively Metabolized Drugs Between Humans and Rats: Mean Allometric Coefficient of 0.66. Pharm Res 15, 1474–1479 (1998). https://doi.org/10.1023/A:1011974226596

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011974226596

Navigation