Skip to main content
Log in

Human Drug Absorption Kinetics and Comparison to Caco-2 Monolayer Permeabilities

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study aims to assess the drug absorption kinetics of three drugs and compare their resulting first-order intestinal permeation rate constants to their Caco-2 monolayer permeabilities.

Methods. In vitro dissolution — in vivo absorption analysis was conducted on four formulations of each ranitidine HC1, metoprolol tartrate, and piroxicam to yield apparent and "true” human clinical permeation rate constants. Drug permeability coefficients through Caco-2 monolayers were also determined.

Results. In vitro dissolution — in vivo absorption analysis revealed different relative and absolute contributions of dissolution and intestinal permeation to overall drug absorption kinetics for various drug formulations and yielded estimates of each drug's true and apparent human intestinal permeation rate constant [k p = 0.225 hr−1, 0.609 hr−l, and 9.00 hr−1 for ranitidine, metoprolol, and piroxicam, respectively]. A rank order relationship was observed for both the apparent and true permeation rate constant with Caco-2 monolayer permeability. The decrease in the true permeation rate constant relative to the apparent permeation rate constant was most significant (almost three-fold) for the least permeable compound, ranitidine.

Conclusions. There were marked differences in the permeation kinetics of ranitidine, metoprolol, and piroxicam. The possibility of an association between absorption kinetics from dosage forms in humans and Caco-2 monolayer permeability may allow for a direct kinetic interpretation of human oral absorption from Caco-2 monolayer permeability values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. E. Polli, G. S. Rekhi, L. L. Augsburger, and V. P. Shah. J. Pharm. Sci. 86:690–700 (1997).

    Google Scholar 

  2. R. T. Borchardt, P. L. Smith, and G. Wilson. Models for Assessing Drug Absorption and Metabolism, Plenum Press, New York, 1996.

    Google Scholar 

  3. I. J. Hildalgo, T. J. Raub, and R. T. Borchardt. Gastroenterology 96:736–749 (1989).

    Google Scholar 

  4. W. Rubas, N. Jezyk, and G. M. Grass. Pharm. Res. 10:113–118 (1993).

    Google Scholar 

  5. M. Hu, L. Zheng, J. Chen, L. Liu, Y. Zhu, A. H. Dantzig, and R. E. Stratford. Pharm. Res. 12:1120–1125 (1995).

    Google Scholar 

  6. P. Artursson and J. Karlsson. Biochem. Biophys. Res. Commun. 175:880–885 (1991).

    Google Scholar 

  7. R. E. Notari, J. L. DeYoung, and R. H. Reuning. J. Pharm. Sci. 61:135–138 (1972).

    Google Scholar 

  8. D. Perrier and M. Gibaldi. J. Pharm. Sci. 62:225–228 (1972).

    Google Scholar 

  9. J. E. Polli, J. R. Crison, and G. L. Amidon. J. Pharm. Sci. 85:753–760 (1996).

    Google Scholar 

  10. L. J. Leeson and H. Weintraub. J. Pharm. Sci. 62:1936–1941 (1972).

    Google Scholar 

  11. D. A. Piscitelli, J. McGlone Dalby, C. Propst, S. Goskonda, P. Schwartz, L. J. S. Goskonda, C. Propst, L. Augsburger, P. Schwartz, and L. Lesko. Pharm. Res. 11:S-163 (1994).

    Google Scholar 

  12. D. A. Piscitelli, J. McGlone Dalby, L. Augsburger, V. P. Shah, L. J. Lesko, and D. Young. Pharm. Res. 12:S-417 (1995).

    Google Scholar 

  13. D. A. Piscitelli, J. McGlone Dalby, C. Propst, S. Goskonda, P. Schwartz, L. J. Lesko, V. Shah, D. Young, and L. L. Augsburger. To be submitted to Pharm. Dev. Technol.

  14. D. A. Piscitelli, S. Bigora, C. Propst, S. Goskonda, P. Schwartz, L. J. Lesko, L. L. Augsburger, and D. Young. Pharm. Dev. Technol. (in press).

  15. G. S. Rekhi, N. E. Eddington, M. J. Fossler, P. Schwartz, L. J. Lesko, and L. L. Augsburger. Pharm. Dev. Technol. 2:11–24 (1997).

    Google Scholar 

  16. S. M. Grant, H. D. Langtry, and R. N. Brogden. Drugs 37:801–870 (1989).

    Google Scholar 

  17. S. S. Davis, J. G. Hardy, and J. W. Fara. Gut 27:886–892 (1986).

    Google Scholar 

  18. K. T. Olkkola, A. V. Brunetto, and M. J. Mattila. Clin Pharmacokinet. 26:107–120 (1994).

    Google Scholar 

  19. U. Fagerholm, M. Johansson, and H. Lennernas. Pharm. Res. 13:1336–1342 (1996).

    Google Scholar 

  20. D. Fleisher. Gastrointestinal Transport of Peptides: Experimental Systems. In M. D. Taylor and G. L. Amidon (eds.), Peptide-based Drug Design: Controlling Transport and Metabolism, American Chemical Society, Washington, DC, 1995, pp. 501–523.

    Google Scholar 

  21. The International Commission on Radiological Protection, Report on the Task Group on Reference Man, Pergamon Press, Oxford, 1974.

    Google Scholar 

  22. J. B. Dressman, G. L. Amidon, and D. Fleisher. J. Pharm. Sci. 74:588–589 (1985).

    Google Scholar 

  23. L. S. Gan, P. H. Hsyu, J. F. Pritchard, and D. Thakker. Pharm. Res. 10:1722–1725 (1993).

    Google Scholar 

  24. P. Artursson, A. Ungell, and J. Lofroth. Pharm. Res. 10:1123–1129 (1993).

    Google Scholar 

  25. A. Collett, E. Sims, D. Walker, Y. L. He, J. Ayrton, M. Rowland, and G. Warhurst. Pharm. Res. 13:216–221 (1996).

    Google Scholar 

  26. S. E. Crowe and M. H. Purdue. Gastroenterology 105:764–772 (1993).

    Google Scholar 

  27. H. Lennernas, L. Knutson, T. Knutson, L. Lesko, T. Salmonson, and G. L. Amidon. Pharm. Res. 12:S-295 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polli, J.E., Ginski, M.J. Human Drug Absorption Kinetics and Comparison to Caco-2 Monolayer Permeabilities. Pharm Res 15, 47–52 (1998). https://doi.org/10.1023/A:1011992518592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011992518592

Navigation