Skip to main content
Log in

ESR Dosimetry of Irradiated Ascorbic Acid

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. As an alternative to heat and gas exposure sterilization, ionizing radiation is gaining interest as a sterilization process for medicinal products. The aim of this work was to develop equations to describe the ESR curves versus dose and storage time after gamma irradiation of ascorbic acid. Several ESR data sets previously acquired in this laboratory were adopted to check the performance of the models.

Results. Limit of detection and limit of discrimination are respectively 0.5 kGy and 2 kGy for ascorbic acid. Linear regression is applicable for doses lower than 25 kGy. Since the radiation dose selected must always be based upon the bioburden of the products and the Degree of Sterility required (ANSI/AAMI/ISO 11137), doses in the range 5−25 kGy could be investigated and linear regression would appear to be the least expensive route to follow and gives good results. Quadratic fit, power function, exponential function and bi-exponential functions are of more general applicability to predict irradiation dose. Decay kinetics for radicals versus storage were considered. Nonhomogeneous kinetics with time-dependent rate (diffusion-controlled second-order reaction) and bi-exponential function appeared valid to reproduce the experimental data. Discrimination between irradiated and unirradiated ascorbic acid is possible after a storage of 800 days.

Conclusions. It is worth noting that, at present, ESR is the only technique which proves to be suitable for identification and quantification purposes in irradiated pharmaceuticals. Moreover, other features such as sensitivity, precision, ease and non-destructive readout make ESR superior to other proposed analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. P. Jacobs. J. Biomed. Appl. 10:59–96 (1995).

    Google Scholar 

  2. B. D. Reid. PDA J. Pharm. Sci. Technol. 49:83–89 (1995).

    Google Scholar 

  3. B. Tilquin and B. Rollmann. J. Chim. Phys. 93:224–231 (1996).

    Google Scholar 

  4. C. Boess and K. W. Böegl. Drug Dev. Ind. Pharm. 22:495–529 (1996).

    Google Scholar 

  5. EN 552, Sterilization of Medical Devices—Validation and Routine control of sterilization irradiation, CEN; European Committee for Standardization: Brussels, Belgium, 1994.

  6. ISO 11137, Sterilization of Health Care Products—Requirements for Validation and Routine control—Radiation Sterilization; International Organization for standardization: Geneva, Switzerland, 1995.

  7. J. Raffi and M. Kent. Handbook of Food Analysis, Nollet. L. Ed., Marcel Dekker, New York, 1995/1996.

    Google Scholar 

  8. M. Gibella, A. S. Crucq, and B. Tilquin. J. Chim. Phys. 90:1041–1053 (1993).

    Google Scholar 

  9. E. Ciranni Signoretti, S. Onori, L. Valvo, P. Fattibene, A. L. Savella, A. De Sena, and S. Alimonti. Drug Dev. Ind. Pharm. 19:1693–1708 (1993).

    Google Scholar 

  10. E. Ciranni Signoretti, L. Valvo, P. Fattibene, S. Onori, and M. Pantaloni. Drug Dev. Ind. Pharm. 20:2493–2508 (1994).

    Google Scholar 

  11. T. Miyazaki, T. Kaneko, T. Yoshimura, A. S. Crucq, and B. Tilquin. J. Pharm. Sci. 83:68–71 (1994).

    Google Scholar 

  12. T. Miyazaki, J. Arai, T. Kaneko, K. Yamamoto, M. Gibella, and B. Tilquin. J. Pharm. Sci. 83:1643–1644 (1994).

    Google Scholar 

  13. S. Onori, M. Pantaloni, P. Fattibene, E. Ciranni Signoretti, L. Valvo, and M. Santucci. Appl. Radiat. Isot. 47:1569–1572 (1996).

    Google Scholar 

  14. N. G. S. Gopal, K. M. Patel, G. Sharma, H. L. Bhalla, P. A. Willis, and N. Hilmy. Radiat. Phys. Chem. 32:619–622 (1988).

    Google Scholar 

  15. M. Sh. L'vova, N. P. Belkina, S. Ya. Erman, and E. I. Kozlov. Khim. Farm. Zh. 14:81–84 (1980).

    Google Scholar 

  16. N. D. Yordanov, and M. Ivanova. Appl. Magn. Reson. 6:333–340 (1994).

    Google Scholar 

  17. A. Plonka. Prog. Reaction Kinetics 16:157–333 (1991).

    Google Scholar 

  18. J. P. Basly, I. Longy, and M. Bernard. Pharm. Res 14:814–818 (1997).

    Google Scholar 

  19. J. P. Basly, J. L. Duroux, and M. Bernard. Int. J. Pharm. 142:125–128 (1996).

    Google Scholar 

  20. J. P. Basly, J. L. Duroux, and M. Bernard. Int. J. Pharm. 149:85–91 (1997).

    Google Scholar 

  21. J. P. Basly, J. L. Duroux, and M. Bernard. Int. J. Pharm. 142:247–249 (1996).

    Google Scholar 

  22. J. P. Basly, J. L. Duroux, and M. Bernard. J. Pharm Biomed. Anal. (in press F96-67).

  23. A. L. Fauconnet, J. P. Basly, and M. Bernard. Int. J. Pharm. 144:123–125 (1996).

    Google Scholar 

  24. J. P. Basly, J. L. Duroux, and M. Bernard. Int. J. Pharm. 139:219–221 (1996).

    Google Scholar 

  25. J. L. Duroux, J. P. Basly, and M. Bernard. J. Chim. Phys. 94:405–409 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.P. Basly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basly, J., Longy, I. & Bernard, M. ESR Dosimetry of Irradiated Ascorbic Acid. Pharm Res 14, 1186–1191 (1997). https://doi.org/10.1023/A:1012102806800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012102806800

Navigation