Skip to main content
Log in

Physiologically Based Pharmacokinetic Models of 2′,3′-Dideoxyinosine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The goal of this study was to develop physiologically based pharmacokinetic (PBPK) models for 2′,3′-dideoxyinosine (ddI) in rats when the drug was administered alone (ddI model) and with pentamidine (ddI + pentamidine model), and to use these models to evaluate the effect of our previously reported pentamidine-ddI interaction on tissue ddI exposure in humans.

Methods. The PBPK models consisted of pharmacologically relevant tissues (blood, brain, gut, spleen, pancreas, liver, kidney, lymph nodes, muscle) and used the assumptions of perfusion-rate limited tissue distribution and linear tissue binding of ddI. The required physiologic model parameters were obtained from the literature, whereas the pharmacokinetic parameters and the tissue-to-plasma partition coefficients were calculated using plasma and tissue data.

Results. The ddI model in rats yielded model-predicted concentration-time profiles that were in close agreement with the experimentally determined profiles after an intravenous ddI dose (5% deviation in plasma and 20% deviation in tissues). The ddI + pentamidine model incorporated the pentamidine-induced increases of ddI partition in pancreas and muscle. The two PBPK models were scaled-up to humans using human physiologic and pharmacokinetic parameters. A comparison of the model-predicted plasma concentration-time profiles with the observed profiles in AIDS patients who often received ddI with pentamidine showed that the ddI model underestimated the terminal half-life (t1/2,β) by 39% whereas the ddI + pentamidine model yielded identical t1/2,β and area-under-the-curve as the observed values (<1% deviation). Simulations of ddI concentration-time profiles in human tissues using the two models showed that pancreas and lymph nodes received about 2- to 30-fold higher ddI concentration than spleen and brain, and that coadministration of pentamidine increased the AUC of ddl in the pancreas by 20%.

Conclusions. Data of the present study indicate that the plasma ddI concentration-time profile in patients were better described by the ddI + pentamidine model than by the ddI model, suggesting that the pentamidine-induced changes in tissue distribution of ddI observed in rats may also occur in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Koenig, H. E. Gendelman, J. M. Orestein, M. C. Dal Canto, G. H. Pezeshkpour, M. Yungbluth, F. Janotta, F. Aksamit, M. A. Martin, and A. S. Fauci. Science 223:1089–1093 (1986).

    Google Scholar 

  2. G. M. Shaw, M. E. Harper, B. H. Hahn, L. G. Epstein, D. C. Gajdusek, R. W. Price, B. A. Navia, C. K. Petto, C. J. O'Hara, J. E. Groopman, E.-S. Cho, J. M. Oleske, F. Wong-Staal, and R. C. Gallo. Science 227:177–181 (1985).

    Google Scholar 

  3. G. Pantaleo, G. Graziosi, J. F. Demarest, L. Butini, M. Montroni, C. H. Fox, J. M. Orenstein, D. P. Kotler, and A. S. Fauci. Nature 362:355–358 (1993).

    Google Scholar 

  4. K. M. Butlar, D. Venzon, N. Henry, R. N. Husson, B. Mueller, F. M. Balis, F. Jacobson, L. L. Lewis, and P. A. Pizzo. Pediatrics 91:747–751 (1993).

    Google Scholar 

  5. S. Kaul, C. A. Knupp, K. A. Dandekar, K. A. Pittman, and R. H. Barbhaiya. Antimicrob. Agents Chemother. 35:610–614 (1991).

    Google Scholar 

  6. C. A. Knupp, W. C. Shyu, R. Dolin, F. T. Valentine, C. Mclaren, R. R. Martin, K. A. Pittman, and R. H. Barbhaiya. Clin. Pharmacol. Ther. 49:523–535 (1991).

    Google Scholar 

  7. M. Qian, T. S. Finco, A. R. Swagler, and J. M. Gallo. Antimicrob. Agents Chemother. 35:1247–1249 (1991).

    Google Scholar 

  8. M. G. Wientjes, E. Mukherji, and J. L.-S. Au. Pharm. Res. 9:1070–1975 (1992).

    Google Scholar 

  9. T.-K. Yeh, H.-J. K. Kang, M. G. Wientjes, and J. L.-S. Au. Pharm. Res. 13:626–630 (1996).

    Google Scholar 

  10. S. L. Bramer, J. L.-S. Au, and M. G. Wientjes. J. Pharmacol. Exp. Ther. 265:731–738 (1993).

    Google Scholar 

  11. G. Ray and E. Murrill. Anal. Lett. 20:1815–1838 (1987).

    Google Scholar 

  12. B. D. Anderson, B. L. Hoesterey, D. C. Baker, and R. E. Galinsky. J. Pharmacol. Exp. Ther. 253:113–118 (1990).

    Google Scholar 

  13. B. D. Anderson, M. B. Wygant, T.-X. Xiang, W. A. Waugh, and V. J. Stella. Int. J. Pharm. 45:27–37 (1988).

    Google Scholar 

  14. B. A. Domin, W. B. Mahony, and T. P. Zimmerman. Biochem. Pharmacol. 46:725–729 (1993).

    Google Scholar 

  15. T. C. K. Chan, L. Shaffer, R. Redmond, and K. L. Pennington. Biochem. Pharmacol. 46:273–278 (1993).

    Google Scholar 

  16. H.-J. K. Kang, M. G. Wientjes, and J. L.-S. Au. Biochem. Pharmacol. 48:2109–2116 (1994).

    Google Scholar 

  17. F. G. King and R. L. Dedrick. J. Pharmacokinet. Biopharm. 9:519–534 (1981).

    Google Scholar 

  18. M. Gibaldi and D. Perrier. Pharmacokinetics. 2nd Ed. Marcel Dekker, New York (1982).

    Google Scholar 

  19. D. H. Ringler and L. Dabich. In H. J. Baker, J. R. Lindsey, and S. H. Weisbroth (eds.), The laboratory rat. Vol. I, Academic Press, New York, 1979, p 113.

    Google Scholar 

  20. A. Bernareggi and M. Rowland. J. Pharmacokinet. Biopharm. 19:21–50 (1991).

    Google Scholar 

  21. B. Davies and T. Morris. Pharm. Res. 10:1093–1095 (1993).

    Google Scholar 

  22. L. K. Tay, E. A. Papp, and J. Timoszik. Biopharm. Drug Dispos. 12:185–197 (1991).

    Google Scholar 

  23. G. F. Ray, W. P. Mason, and M. Z. Badr. Drug Metab. Dispos. 18:654–658 (1990).

    Google Scholar 

  24. H.-S. G. Chen and J. F. Gross. J. Pharmacokinet. Biopharm. 7:117–125 (1979).

    Google Scholar 

  25. J. M. Gallo, F. C. Lam, and D. G. Perrier. J. Pharmacokinet. Biopharm. 15:271–280 (1987).

    Google Scholar 

  26. R. J. Lutz, R. L. Dedrick, J. A. Straw, M. M. Hart, P. Klubes, and D. S. Zaharko. J. Pharmacokinet. Biopharm. 3:77–97 (1975).

    Google Scholar 

  27. R. J. Ravasco, J. D. Unadkat, C.-C. Tsai, and C. Nosbisch. J. Acquir. Immune Defic. Syndr. 5:1016–1018 (1992).

    Google Scholar 

  28. F. T. Valentine, M. Seidlin, H. Hochster, and M. Laverty. Rev. Infect. Dis. 12:S534–539 (1990).

    Google Scholar 

  29. K. J. Connolly, J. D. Allan, H. Fitch, L. Jackson-Pope, C. McLaren, R. Canetta, and J. E. Groopman. Am. J. Med. 91:471–475 (1991).

    Google Scholar 

  30. M. Rowland and T. N. Tozer. Clinical Pharmacokinetics. Concepts and Applications. Lea and Febiger, Philadelphia (1980).

    Google Scholar 

  31. J. A. Golden, M. H., Katz, D. N. Chernoff, S. M. Duncan, and J. E. Conte, Jr. Chest 104:743–750 (1993).

    Google Scholar 

  32. J. E. Chelly, D. C. Hill, D. R. Abernethy, A. Dlewati, M.-F. Doursout, and R. G. Merin. J. Pharmacol. Exp. Ther. 243:211–216 (1987).

    Google Scholar 

  33. D. J. Kerr, J. Graham, J. Cummings, J. G. Morrison, G. G. Thompson, M. J. Brodie, and S. B. Kaye. Cancer Chemother. Pharmacol. 18:239–242 (1986).

    Google Scholar 

  34. D. E. Smith, D. E. Brenner, C. A. Knutsen, S. J. Deremer, P. A. Terrio, N. J. Johnson, P. L. Stetson, and W. D. Ensminger. Drug Metab. Dispos. 21:277–283 (1993).

    Google Scholar 

  35. L. C. Rodondi, J. F. Flaherty, P. Schoenfeld, S. L. Barriere, and J. G. Gambertoglio. Clin. Pharmacol. Ther. 45:527–534 (1989).

    Google Scholar 

  36. U. Büch, P. Altmayer, J. C. Isenberg, and H. P. Büch. Arzneimittel-Forschung. 41:363–366 (1991).

    Google Scholar 

  37. T. H. Grasela, C. A. Walawander, M. Beltangady, C. A. Knupp, R. R. Martin, L. M. Dunkle, R. H. Barbhaiya, K. A. Pittman, R. Dolin, F. T. Valentine, and H. A. Liebman. J. Infect. Dis. 169:1250–1255 (1994).

    Google Scholar 

  38. T. E. Herchline, J. F. Plouffe, and M. F. Para. J. Infect. 22:41–44 (1991).

    Google Scholar 

  39. U. Balslev and T. L. Nielsen. Dan. Med. Bull. 39:366–368 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HJ.K., Wientjes, M.G. & Au, J.LS. Physiologically Based Pharmacokinetic Models of 2′,3′-Dideoxyinosine. Pharm Res 14, 337–344 (1997). https://doi.org/10.1023/A:1012002206007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012002206007

Navigation