Skip to main content
Log in

Oral Absorption of Peptides: The Effect of Absorption Site and Enzyme Inhibition on the Systemic Availability of Metkephamid

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In this study the intestinal degradation and absorption of a synthetic pentapeptide, metkephamid, were investigated in the rat by determination of its wall permeabilities in the small and large intestine and the extent and mechanism of its intestinal degradation. The peptide was metabolized in the gut wall through contact with membrane-bound enzymes in the brush border membrane. The extent of metabolic inactivation depended on the intestinal segment investigated and decreased in the axial direction. No metabolism was found in the colon. The dimensionless wall permeabilities (P w*), determined by single-pass perfusion, were also site dependent. P w* was highest in the ileum [1.91 ± 0.24, (SE); n = 4], followed by the jejunum (1.64 ± 0.34; n = 4) and the colon (0.67 ± 0.38; n = 4). Based on the permeability data alone and under the assumption of no presystemic metabolism, complete bioavailability would be predicted for metkephamid. However, following oral administration, the mean absolute bioavailability was only 0.22 ± 0.065% (n = 3), indicating the overall dominance of degradation in the absorption process. Thus future strategies in oral peptide delivery should focus on increasing the stability of the peptide in the intestine by modifying the peptide structure and/or delivering the compound to an intestinal segment showing little or no enzymatic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. E. Su, K. M. Campanale, L. G. Mendelsohn, G. A. Kerchner, and C. L. Gries. Nasal delivery of polypeptides. I. Nasal absorption of enkephalins in rats. J. Pharm. Sci. 74:394–398 (1985).

    Google Scholar 

  2. M. J. Humphrey. The oral bioavailability of peptides and related drugs. In S. S. Davis, L. Illum, and E. Tomlinson (eds.), Delivery Systems for Peptide Drugs, Plenum Press, New York, 1986, pp. 139–151.

    Google Scholar 

  3. P. Langguth, V. Bohner, J. Biber, and H. P. Merkle. Metabolism and transport of the pentapeptide metkephamid by brush-border membrane vesicles of rat intestine. J. Pharm. Pharmacol. 46:34–40 (1994).

    Google Scholar 

  4. M. Hu, P. J. Sinko, A. L. J. DeMeere, D. A. Johnson, and G. L. Amidon. Membrane permeability parameters for some amino acids and β-lactam antibiotics: Application of the boundary layer approach. J. Theor. Biol. 131:107–114 (1988).

    Google Scholar 

  5. H. Hauser, K. Howell, R. M. C. Dawson, and D. E. Bowyer. Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim. Biophys. Acta. 602:567–577 (1980).

    Google Scholar 

  6. S. A. Kaplan and L. M. Jack. In vitro, in situ and in vivo models in bioavailability assessment. In J. Blanchard, R. J. Sawchuck, and B. B. Brodie (eds.), Principles and Perspectives in Drug Bioavailability, S. Karger AG, Basel, 1979, pp. 156–191.

    Google Scholar 

  7. D. A. Johnson and G. L. Amidon. Determination of intrinsic membrane transport parameters from perfused intestine experiments: A boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J. Theor. Biol. 131:93–106 (1988).

    Google Scholar 

  8. M. Gibaldi and D. Perrier. Pharmacokinetics, Dekker, New York, 1982.

    Google Scholar 

  9. C. M. Metzler and D. L. Weiner. PCNONLIN, SCI Software, Lexington, KY, 1992.

    Google Scholar 

  10. R. C. Reiz, J. M. Prausnitz, and T. K. Sherwood. The Properties of Gases and Liquids, McGraw-Hill, New York, 1977, pp. 57–59.

    Google Scholar 

  11. B. J. Aungst, J. A. Blake, and M. A. Hussain. An in vitro evaluation of metabolism and poor membrane permeation empeding absorption of leucine enkephalin and methods to increase absorption. J. Pharmacol. Exp. Ther. 259:139–145 (1991).

    Google Scholar 

  12. S. D. Kashi and V. H. L. Lee. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albine rabbit: Similarities in rates and involvement of aminopeptidases. Life Sci. 38:2019–2028 (1986).

    Google Scholar 

  13. D. I. Friedman and G. L. Amidon. Oral absorption of peptides: Influence of pH and inhibitors on the intestinal hydrolysis of Leu-enkephalin and analogues. Pharm. Res. 8:93–96 (1991).

    Google Scholar 

  14. L. E. Geary, K. S. Wiley, W. L. Scott, and M. L. Cohen. Degradation of exogeneous enkephalin in the guinea-pig ileum: Relative importance of aminopeptidase, enkephalinase and angiotensin converting enzyme activity. J. Pharmacol. Exp. Ther. 221:104–111 (1982).

    Google Scholar 

  15. T. Palmer. Understanding Enzymes, 3rd ed., Ellis Horwood, New York, 1991, pp. 206–207.

    Google Scholar 

  16. M. L. Bender and L. J. Brubacher. Catalysis and Enzyme Action, McGraw-Hill, New York, 1973, p. 76.

    Google Scholar 

  17. D. Schomburg and M. Salzmann. Enzyme Handbook 5: Hydrolases, Springer Verlag, Berlin, 1991.

    Google Scholar 

  18. S. Miura, I.-S. Song, A. Morita, R. H. Erickson, and Y. S. Kim. Distribution and biosynthesis of aminopeptidase N and dipeptidylaminopeptidase IV in rat small intestine. Biochim. Biophys. Acta 761:66–75 (1983).

    Google Scholar 

  19. S. A. Adibi and Y. S. Kim. Peptide absorption and hydrolysis. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1981, pp. 1073–1095.

    Google Scholar 

  20. S. Aurichio, L. Greco, B. de Vizia, and V. Buonocore. Dipeptidylaminopeptidase and carboxypeptidase activities of the brush border of rabbit small intestine. Gastroenterology 75:1073–1079 (1978).

    Google Scholar 

  21. N. Triadou, J. Bataille, and J. Schmitz. Longitudinal study of the human intestinal brush border membrane proteins. Gastroenterology 85:1326–1332 (1983).

    Google Scholar 

  22. G. L. Amidon, P. J. Sinko, and D. Fleisher. Estimating human oral fraction dose absorbed: A correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm. Res. 5:651–654 (1988).

    Google Scholar 

  23. S. Lundin, N. Pantzar, A. Broeders, M. Ohlin, and B. R. Weström. Differences in transport rate of oxytocin and vasopressin analogues across proximal and distal isolated segments of the small intestine of the rat. Pharm. Res. 8:1274–1280 (1991).

    Google Scholar 

  24. V. S. Chadwick, S. Phillips, and F. Hofmann. Gastroenterology 73:247–251 (1977).

    Google Scholar 

  25. S. Lundin and H. Vilhardt. Absorption of 1-deamino-8-D-arginine vasopressin from different regions of the gastrointestinal tract in rabbits. Acta Endocrinol. 112:457–460 (1986).

    Google Scholar 

  26. L. G. Roda, G. Roscetti, R. Possenti, F. Venturelli, and F. Vita. Control mechanisms in the enzyme hydrolysis of adrenal-released enkephalins. In N. P. Plotnikoff, R. E. Faith, A. J. Murgo, and R. A. Good (eds.), Enkephalins and Endorphins. Stress and the Immune System, Plenum Press, New York, 1986, pp. 17–33.

    Google Scholar 

  27. A. J. Kenny, S. L. Stephenson, and A. J. Turner. Cell surface peptidases. In A. J. Kenny and A. J. Turner (eds.), Mammalian Ectoenzymes, Elsevier, Amsterdam, 1987, pp. 169–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langguth, P., Merkle, H.P. & Amidon, G.L. Oral Absorption of Peptides: The Effect of Absorption Site and Enzyme Inhibition on the Systemic Availability of Metkephamid. Pharm Res 11, 528–535 (1994). https://doi.org/10.1023/A:1018962415287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018962415287

Navigation