Skip to main content
Log in

Shear Stress Differentially Regulates PGHS-1 and PGHS-2 Protein Levels in Human Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The secretion of prostacyclin (PGI2) by endothelial cells is regulated by shear stress.Prostaglandin H synthase (PGHS) is considered to be a key limiting enzyme in the synthesis of PGI2from arachidonic acid. Endothelial cells were cultured in the presence of 4, 15, or 25 dyn/cm2shear stress using a parallel plate flow chamber to assess the effect of shear stress on both PGHS isoforms, PGHS-1 and PGHS-2.In cells exposed to 4, 15, or 25 dyn/cm2 shear stress PGHS-1 and PGHS-2 protein levels initially decreased.The decrease was followed by a sustained increase for PGHS-1 but only a transient increase for PGHS-2. The duration of the PGHS-2increase depended on the magnitude of the shear stress. The effect of altering shear stress levels on PGHS protein levels in cellspreconditioned to either 4, 15, or 25 dyn/cm2 shear stress for 48 h was also studied. Changing shear stresslevels effected PGHS-2 but not PGHS-1. Increases in shear stress levels from 4 to 15 or 25 dyn/cm2 caused a decreasein PGHS-2. In contrast, decreases in shear stress levels from 15 or 25 to 4 dyn/cm2 caused PGHS-2 to increase.There was a continual decrease in PGHS-2 when the shear stress was changed from 15 to 25 or 25 to 15 dyn/cm2In summary, the regulation of PGHS-2 by shear stress is dependent upon the magnitude of the shear stress, whereas the regulation of PGHS-1protein levels seems to be independent of the shear stress magnitude. The regulation of PGHS-1 and PGHS-2 protein levels by shear stressindicates that these proteins play an important role in the maintenance of cardiovascular homeostasis as regulators of PGI2production. © 2000 Biomedical Engineering Society.

PAC00: 8717-d, 8719Rr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bassingthwaighte, J. Blood flow and diffusion through mammalian organs. Science 167:1347–1353, 1970.

    Google Scholar 

  2. Bassingthwaighte, J. B., and D. A. Beard. Fractal 15O-labeled water washout from the heart. Circ. Res. 77:1212–1221, 1995.

    Google Scholar 

  3. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood heterogeneity. Circ. Res. 65:578–590, 1989.

    Google Scholar 

  4. Caruthers, S. D., T. R. Harris, K. A. Overholser, N. A. Pou, and R. E. Parker. Effects of flow heterogeneity on the measurement of capillary exchange in the lung. J. Appl. Physiol. 79:1449–1460, 1995.

    Google Scholar 

  5. Chinard, F. P., and T. Enns. Transcapillary pulmonary exchange of water in the dog. Am. J. Physiol. 178:197–202, 1954.

    Google Scholar 

  6. Chinard, F. P., T. Enns, and M. F. Nolan. Indicator-dilution studies with “diffusible” indicators. Circ. Res. 10:473–490, 1962.

    Google Scholar 

  7. Clough, A. V., S. T. Haworth, C. C. Hanger, J. Wang, D. L. Roerig, J. H. Linehan, and C. A. Dawson. Transit time dispersion in the pulmonary arterial tree. J. Appl. Physiol. 85:565–574, 1998.

    Google Scholar 

  8. Cousineau, D., C. A. Goresky, and C. P. Rose. Blood flow and norepinephrine effects on liver vascular and extravascular volumes. Am. J. Physiol. 244:H495–H504, 1983.

    Google Scholar 

  9. Cousineau, D., C. P. Rose, D. Lamoureux, and C. A. Goresky. Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog. Circ. Res. 53:719–730, 1983.

    Google Scholar 

  10. Cousineau, D., C. A. Goresky, C. P. Rose, A. Simard, and A. J. Schwab. Effects of flow, perfusion pressure, and oxygen consumption on cardiac capillary exchange. J. Appl. Physiol. 78:1350–1359, 1995.

    Google Scholar 

  11. Domenech, R. J., J. I. E. Hoffman, M. I. M. Noble, and K. B. Saunders. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ. Res. 25:581–597, 1969.

    Google Scholar 

  12. Glazier, J. B., J. M. Hughes, J. E. Maloney, and J. B. West. Measurement of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26:65–76, 1968.

    Google Scholar 

  13. Glenny, R., H. T. Robertson, S. Yamashiro, and J. B. Bassingthwaighte. Applications of fractal analysis to physiology. J. Appl. Physiol. 70:2351–2367, 1991.

    Google Scholar 

  14. Goresky, C. A. A linear method for determining liver sinusoidal and extravasular volume. Am. J. Physiol. 204:626–640, 1963.

    Google Scholar 

  15. Goresky, C. A., A. Simard, and A. J. Schwab. Increased hepatic permeability surface area product for 86RB with increase in blood flow. Circ. Res. 80:645–654, 1997.

    Google Scholar 

  16. Hamilton, W. F., J. W. Moore, J. M. Kinsman, and R. G. Spurling. Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to cardiac output. Am. J. Physiol. 84:338–344, 1928.

    Google Scholar 

  17. Hanson, W. L., J. D. Emhardt, J. P. Barket, L. P. Latham, L. L. Checkley, R. L. Capen, and W. W. Wagner, Jr. Site of recruitment in the pulmonary microcirculation. J. Appl. Physiol. 66:2079–2083, 1989.

    Google Scholar 

  18. Hering, E. Versuche, die Schnelligkeit des Blutlaufs und der Absonderung zu Bestimmen. Z. Phys. 3:85–126, 1829.

    Google Scholar 

  19. King, R. B., G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Eng. 24:352–372, 1996.

    Google Scholar 

  20. Maseri, A., P. Caldini, P. Harward, R. C. Joshi, S. Permutt, and K. L. Zierler. Determinants of pulmonary vascular volume. Recruitment versus distensibility. Circ. Res. 31:218– 228, 1972.

    Google Scholar 

  21. Maseri, A., P. Caldini, S. Permutt, and K. L. Zierler. Frequency function of transit times through dog pulmonary circulation. Circ. Res. 26:527–543, 1970.

    Google Scholar 

  22. Meier, P. and K. L. Zierler. On the theory of indicatordilution method for measurement of blood flow and volume. J. Appl. Physiol. 6:731–744, 1954.

    Google Scholar 

  23. Newman, E. V., M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKeever. The dye dilution method for describing central circulation. An analysis of factors shaping the time-concentration curve. Circulation 4:735–746, 1951.

    Google Scholar 

  24. Overholser, K. A., N. A. Lomangino, R. E. Parker, N. A. Pou, and T. R. Harris. Pulmonary vascular resistance distribution and recruitment of microvascular surface area. J. Appl. Physiol. 77:845–855, 1994.

    Google Scholar 

  25. Rogus, E., R. Tancredi, K. Zierler. Capillary recruitment in pulmonary vascular bed. Fed. Proc. 36:535, 1977.

    Google Scholar 

  26. Stephenson, J. L. Theory of measurement of blood flow by the dilution of an indicator. Bull. Math. Biophys. 10:117–121, 1948.

    Google Scholar 

  27. Stewart, G. N. Researches on the circulation time in organs and on the influences which affect it. J. Physiol. (London) 15:1–89, 1893.

    Google Scholar 

  28. Stewart, G. N. Researches on the circulation time and on the influences which affect it. IV. The output of the heart. J. Physiol. (London) 22:159–183, 1897.

    Google Scholar 

  29. Tancredi, R., Caldini, P., Shanoff, M., Permutt, S., and Zierler, K. The pulmonary microcirculation evaluated by tracer 847 Indicator Diluation: Brief History and Memoir dilution techniques. In: Cardiovascular Nuclear Medicine, edited by H. W. Strauss, B. Pitt, A. E. James, Jr., St. Louis: C. V. Mosby, 1974, pp. 255–260.

    Google Scholar 

  30. Tancredi, R., and K. L. Zierler. Indicator-dilution, flowpressure and volume-pressure curves in excised dog lung. Fed. Proc. 30:380, 1971.

    Google Scholar 

  31. Warrel, D. A., J. W. Evans, R. O. Clarke, G. P. Kingaby, and J. B. West. Patterns of filling in the pulmonary capillary bed. J. Appl. Physiol. 32:346–356, 1972.

    Google Scholar 

  32. West, J. B., C. T. Dollery, and A. Naimark. Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures. J. Appl. Physiol. 19:713–724, 1964.

    Google Scholar 

  33. Ypintsoi, T., W. A. Dobbs, Jr., P. D. Scanlon, T. J. Knopf, and J. B Bassingthwaighte. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ. Res. 33:573–587, 1973.

    Google Scholar 

  34. Zierler, K. L. Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16:309–321, 1965.

    Google Scholar 

  35. Zierler, K. L. Measurement of the volume of extravascular water in the lungs in intact animals and man. A review of tracer dilution principles, of some reported results, and a new hypothesis to explain the shape of tracer-dilution curves and certain other interesting relationships. In: Central Hemodynamics and Gas Exchange, edited by C. Giuntini. Torino: Minerva Medica, 1970, pp. 3–18.

    Google Scholar 

  36. Zierler, K. L. Why tracer dilution curves through a vascular system have the shape they do. In: Computer Processing of Dynamic Images, edited by K. B. Larson and J. R. Cox, Jr., New York: Society of Nuclear Medicines, 1974, Chap. 8, pp. g95–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, S.M., Whitson, P.A., Wu, K.K. et al. Shear Stress Differentially Regulates PGHS-1 and PGHS-2 Protein Levels in Human Endothelial Cells. Annals of Biomedical Engineering 28, 824–833 (2000). https://doi.org/10.1114/1.1289472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1289472

Navigation