Skip to main content
Log in

Measurement of the Contrast Agent Intrinsic and Native Harmonic Response with Single Transducer Pulse Waved Ultrasound Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ultrasound contrast agents, i.e., small gas filled microbubbles, enhance the echogenicity of blood and have the potential to be used for tissue perfusion assessment. The contrast agents scatter ultrasound in a nonlinear manner and thereby introduce harmonics in the ultrasound signal. This property is exploited in new ultrasound techniques like harmonic imaging, which aims to display only the contrast agent presence. Much attention has already been given to the physical properties of the contrast agent. The present study focuses on practical aspects of the measurement of the intrinsic harmonic response of ultrasound contrast agents with single transducer pulse waved ultrasound systems. Furthermore, the consequences of two other sources of harmonics are discussed. These sources are the nonlinear distortion of ultrasound in a medium generating native harmonics, and the emitted signal itself which might contain contaminating harmonics. It is demonstrated conceptually and by experiments that optimization of the contrast agent harmonic response measured with a single transducer is governed by the transducer spectral sensitivity distribution rather than the resonance properties of the contrast agent. Both native and contaminating harmonics may be of considerable strength and can be misinterpreted as intrinsic harmonics of the contrast agent. Practical difficulties to filter out the harmonic component selectively, without deteriorating the image, may cause misinterpretation of the fundamental as a harmonic. © 1999 Biomedical Engineering Society.

PAC99: 8763Df, 4380Qf

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Averkiou, M. A., and M. F. Hamilton. Measurement of harmonic generation in a focused finite-amplitude sound beam. J. Acoust. Soc. Am. 98:3439–3442, 1995.

    Google Scholar 

  2. Bos, L. J. The Application of Contrast Echocardiography for the Assessment of Myocardial Perfusion. Amsterdam: University of Amsterdam, Thesis, 1997.

    Google Scholar 

  3. Burns, P. N. Harmonic imaging with ultrasound contrast agents. Clin. Radiol. 51:50–55, 1996.

    Google Scholar 

  4. Cachard, C., A. Bouakkaz, and G. Gimenez In vitro evaluation of acoustic properties of ultrasound contrast agents: experimental setup and signal processing. Ultrasonics 34:595–598, 1996.

    Google Scholar 

  5. Chang, P. H., K. K. Shung, S. Wu, and H. B. Levene Second harmonic imaging and harmonic Doppler measurements with Albunex. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42:1020–1026, 1995.

    Google Scholar 

  6. Christopher, T. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:125–139, 1997.

    Google Scholar 

  7. Christopher, T. Experimental investigation of finite amplitude distortion-based, second harmonic pulse echo ultrasonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45:158–162, 1998.

    Google Scholar 

  8. Cobb, W. N. Finite amplitude method for the determination of the acoustic nonlinearity parameter B/A. J. Acoust. Soc. Am. 73:1525–1531, 1983.

    Google Scholar 

  9. de Jong, N. Acoustic Properties of Ultrasound Contrast Agents. Rotterdam: Erasmus University, Thesis, 1993.

    Google Scholar 

  10. Duck, F. A. Physical Properties of Tissue. London: Academic, 1990.

    Google Scholar 

  11. Evans, D. H., W. N. McDicken, R. Skidmore, and J. P. Woodcock. Doppler Ultrasound, Physics, Instrumentation and Clinical Applications. Chichester: Wiley, 1989.

    Google Scholar 

  12. Forsberg, F., Y. Wu, I. R. S. Makin, W. Wang, and M. A. Wheatley Quantitative acoustic characterization of a new surfactant-based ultrasound contrast agent. Ultrasound Med. Biol. 23:1201–1208, 1997.

    Google Scholar 

  13. Frischke, C., J. R. Lindner, K. Wei, N. C. Goodman, D. M. Skyba, and S. Kaul Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second-generation echocardiographic contrast agent. Circulation 96:959–967, 1997.

    Google Scholar 

  14. Gong, X., Z. Zhu, T. Shi, and J. Huang Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods. J. Acoust. Soc. Am. 86:1–5, 1989.

    Google Scholar 

  15. Hartley, G. J., J. Cheirif, K. R. Collier, J. S. Bravenec, and J. K. Mickelson Doppler quantification of echo-contrast injections in vivo. Ultrasound Med. Biol. 19:269–278, 1993.

    Google Scholar 

  16. Hauff, P., T. Fritzsch, M. Reinhardt, W. Weitschies, F. Luders, V. Uhlendorf, and D. Heldmann Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest. Radiol. 32:94–99, 1997.

    Google Scholar 

  17. Kono, Y., F. Moriyasu, Y. Mine, T. Nada, N. Kamiyama, Y. Suginoshita, T. Matsumura, K. Kobayashi, and T. Chiba Gray-scale second harmonic imaging of the liver with galactose-based microbubbles. Invest. Radiol. 3:120–125, 1997.

    Google Scholar 

  18. Krishna, P. D., and V. L. Newhouse Second harmonic characteristics of the ultrasound contrast agents albunex and FS069. Ultrasound Med. Biol. 23:453–459, 1997.

    Google Scholar 

  19. Leischik, R., J. Rose, G. Caspari, A. Skyschally, G. Heusch, and R. Erbel Contrast echocardiography for assessment of myocardial perfusion. Herz 22:40–50, 1997.

    Google Scholar 

  20. Madjar, H., and J. Jellins Role of echo enhanced ultrasound in breast mass investigations. Eur. J. Ultrasound 5:65–75, 1997.

    Google Scholar 

  21. Meerbaum, S. Microbubble fluid dynamics of echocontrast. In: Advances in Echo Imaging Using Contrast Enhancement, edited by N. C. Nanda, R. Schlief, and B. B. Goldberg. Dordrecht: Kluwer Academic, 1997, pp. 3–38.

    Google Scholar 

  22. Monaghan, M. J., J. M. Metcalfe, S. Odunlami, A. Waaler, and D. E. Jewitt Digital radiofrequency echocardiography in the detection of myocardial contrast following intravenous administration of Albunex. Eur. Heart J. 14:1200–1209, 1993.

    Google Scholar 

  23. Powers, J. E., P. N. Burns, and J. Souquet. Imaging instrumentation for ultrasound contrast agents. In: Advances in Echo Imaging Using Contrast Enhancement, edited by N. C. Nanda, R. Schlief, and B. B. Goldberg. Dordrecht: Kluwer Academic, 1997, pp. 139–170.

    Google Scholar 

  24. Rovai, D., E. M. Ferdeghini, A. Mazzarisi, M. Paternui, V. Lubrano, C. Vassalle, L. Serasini, and A. L'Abbate Quantitative aspects in myocardial contrast echocardiography. Eur. Heart J. 16:42–45, 1995.

    Google Scholar 

  25. Schlief, R. Echo-enhancing agents: Their physics and pharmacology. In: Advances in Echo Imaging Using Contrast Enhancement, edited by N. C. Nanda, R. Schlief, and B. B. Goldberg. Dordrecht: Kluwer Academic, 1997, pp. 85–113.

    Google Scholar 

  26. Schrope, B., V. L. Newhouse, and V. Uhlendorf Simulated capillary blood flow measurement using a nonlinear ultrasonic contrast agent. Ultrason. Imaging 14:134–158, 1992.

    Google Scholar 

  27. Schrope, B. A., and V. L. Newhouse Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med. Biol. 19:567–579, 1993.

    Google Scholar 

  28. Seidel, G., and M. Kaps Harmonic imaging of the vertebrobasilar system. Stroke 28:1610–1613, 1997.

    Google Scholar 

  29. Strauss, A. L., and K. D. Beller Contrast ultrasonography for 2-D opacification of heart cavities, peripheral vessels, kidney and muscle. Ultrasound Med. Biol. 23:975–982, 1997.

    Google Scholar 

  30. Villarraga, H. R., D. A. Foley, B. C. Aeschbacher, K. W. Klarich, and S. L. Mulvagh Destruction of contrast microbubbles during ultrasound imaging at conventional power output. J. Am. Soc. Echocardiogr. 10:783–91, 1997.

    Google Scholar 

  31. Ward, B., A. C. Baker, and V. F. Humphrey Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J. Acoust. Soc. Am. 101:143–154, 1997.

    Google Scholar 

  32. Wilson, B., K. K. Shung, B. Hete, H. Levene, and J. L. Barnhart A feasibility study on quantitating myocardial perfusion with Albunex, an ultrasonic contrast agent. Ultrasound Med. Biol. 19:181–191, 1993.

    Google Scholar 

  33. Wu, J., and J. Tong Measurement of the nonlinearity parameter B/A of contrast agents. Ultrasound Med. Biol. 24:153–159, 1997.

    Google Scholar 

  34. Wu, J., and J. Tong Experimental study of stability of a contrast agent in an ultrasound field. Ultrasound Med. Biol. 24:257–265, 1998.

    Google Scholar 

  35. Zheng, W., and V. L. Newhouse Onset delay of acoustic second harmonic backscatter from bubbles or microspheres. Ultrasound Med. Biol. 24:513–522, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, X.A.A.M., Willigers, J.M., Brands, P.J. et al. Measurement of the Contrast Agent Intrinsic and Native Harmonic Response with Single Transducer Pulse Waved Ultrasound Systems. Annals of Biomedical Engineering 27, 670–681 (1999). https://doi.org/10.1114/1.209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.209

Navigation