Skip to main content
Log in

Flow-driven Diameter Response in Rat Femoral Arteries Perfused In Vitro

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effects of flow and flow changes on arterial diameter were investigated in vitro on isolated rat femoral arteries. Segments of femoral arteries were excised, mounted on microcannulas, and perfused with Tyrode's solution (37°C). Perfusion pressure was kept constant at 90 mm Hg. The mean external diameter after equilibration at a transmural pressure of 90 mm Hg was 720 ± 50 μ m (n=12). Vessels were then constricted with norepinephrine (1 μM in the superfusion solution) to 77% ± 13% of the resting diameter; acetylcholine was used to check endothelial function. The external diameter was measured continuously using video microscopy. The arteries were subjected to two different types of flow variations: (a) step changes in flow (increase and decrease, n=6) and (b) low-frequency sinusoidal flow variations (frequencies ranging from 0.002 to 0.1 Hz, n=11). Flow ranged from 0 to 800 μ l/min (shear stress ranging from 0 to 15 dyn/cm2). All measured vessels constricted as flow increased. Flow steps induced exponential-like contractions (flow increase) or relaxations (flow decrease) with mean characteristic time constants 31 ± 4 and 22 ± 2 s, respectively. Sinusoidal flow oscillations induced sinusoidal diameter oscillations with a time delay. An increase in the frequency of the flow led to a decrease of both the amplitude of the flow-induced diameter oscillations and the phase shift between flow and diameter. The dynamic diameter response to flow changes could be characterized by a first-order low-pass filter with a time constant of 22 s. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Achakri, H., N. Stergiopulos, N. Hoogerwerf, D. Hayoz, H. R. Brunner, and J. J. Meister. Intraluminal pressure modulates the magnitude and the frequency of induced vasomotion in rat arteries. J. Vasc. Res.32:237-246, 1995.

    Google Scholar 

  2. Bergersen, T. K., M. Eriksen, and L. Walloe. Effect of local warming on hand and finger artery blood velocities. Am. J. Physiol.269:R325-R330, 1995.

    Google Scholar 

  3. Bevan, J. A., E. H. Joyce, and G. C. Wellman. Flowdependent dilation in a resistance artery still occurs after endothelium removal. Circ. Res.63:980-985, 1988.

    Google Scholar 

  4. Bevan, J. A., and E. H. Joyce. Flow-induced resistance artery tone: Balance between constrictor and dilator mechanisms. Am. J. Physiol.258:H663-H668, 1990.

    Google Scholar 

  5. Bevan, J. A., G. C. Wellman, and E. H. Joyce. Flow-induced constriction of rabbit resistance artery is sodium-dependent. J. Vasc. Res.27:369-372, 1990.

    Google Scholar 

  6. Bevan, J. A., and E. H. Joyce. Comparable sensitivity of flow contraction and relaxation to Na reduction may reflect flowsensor characteristics. Am. J. Physiol.263:H182-H187, 1992.

    Google Scholar 

  7. Cooke, J. P., E. Rossitch, N. A. Andon, J. Loscalzo, and V. J. Dzau. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J. Clin. Invest.88:1663-1671, 1991.

    Google Scholar 

  8. Doyle, M. P., J. Linden, and B. R. Duling. Nucleosideinduced arteriolar constriction: A mast cell-dependent response. Am. J. Physiol.266:H2402-H2050, 1994.

    Google Scholar 

  9. Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (London)288:373-376, 1980.

    Google Scholar 

  10. Garcia-Roldan, J. L., and J. A. Bevan. Flow-induced constriction and dilation of cerebral resistance arteries. Circ. Res.66:1445-1448, 1990.

    Google Scholar 

  11. Griffith, T. M., D. H. Edwards, R. L. I. Davies, T. J. Harrison, and K. T. Evans. ERDF coordinates the behaviour of vascular resistance vessels. Nature (London)329:442-445, 1987.

    Google Scholar 

  12. Hayoz, D., Y. Tardy, B. Rutschmann, J. P. Mignot, H. Achakri, F. Feihl, J. J. Meister, B. Waeber, and H. R. Brunner. Spontaneous diameter oscillations of the radial artery in human beings. Am. J. Physiol.26:H2080-H2084, 1993.

    Google Scholar 

  13. Hayoz, D., L. Bernardi, G. Noll, R. Weber, C. A. Porret, C. Passino, R. Wenzel, and N. Stergiopulos. Flow-diameter phase shift. A potential indicator of conduit artery function. Hypertension26:20-25, 1995.

    Google Scholar 

  14. Henrion, D., I. Laher, and J. A. Bevan. Intraluminal flow increases vascular tone and Ca2+ influx in the rabbit facial vein. Circ. Res.71:339-345, 1992.

    Google Scholar 

  15. Hoogerwerf, N., E. J. Zijlstra, P. J. W. van der Linden, N. Westerhof, and P. Sipkema. Endothelium function is protected by albumin and flow-induced constriction is independent of endothelium and tone in isolated rabbit femoral artery. J. Vasc. Res.29:367-675, 1992.

    Google Scholar 

  16. Hull, S. S., L. Kaiser, M. D. Jaffe, and H. V. Sparks. Endothelium-dependent flow-induced dilation of canine femoral and saphenous arteries. J. Vasc. Res.23:183-198, 1986.

    Google Scholar 

  17. Hutcheson, I. R., and T. M. Griffith. Release of endotheliumderived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am. J. Physiol.261:H257-H262, 1991.

    Google Scholar 

  18. Ingebrigsten, R., and S. Leraand. Dilatation of a mediumsized artery immediately after local changes of blood pressure and flow as measured by ultrasonic technique. Acta Physiol. Scand.79:552-558, 1970.

    Google Scholar 

  19. Ku, D. N., and C. Zhu. The mechanical environment of the artery. In: Hemodynamic Forces and Vascular Cell Biology, edited by B. E. Sumpio. Austin, TX: R. G. Landes, 1993, pp. 1-23.

    Google Scholar 

  20. Kuo, L., M. J. Davis, and W. M. Chilian. Endotheliumdependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol.259:H1063-H1070, 1990.

    Google Scholar 

  21. Lie, M., O. M. Sejersted, and F. Kiil. Local regulation of vascular cross section during changes in femoral arterial blood flow changes. Circ. Res.27:727-737, 1970.

    Google Scholar 

  22. Melkumyants, A. M., S. A. Balashov, E. S. Veselova, and V. M. Khayutin. Continuous control of the lumen of feline conduit arteries by blood flow rate. Cardiovasc. Res.21:871- 877, 1987.

    Google Scholar 

  23. Melkumyants, A. M., S. A. Balashov, and V. M. Khayutin. Endothelium-dependent control of arterial diameter by blood viscosity. Cardiovasc. Res.23:741-747, 1989.

    Google Scholar 

  24. Ngai, A. C., and H. R. Winn. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ. Res.77:832-840, 1995.

    Google Scholar 

  25. Osol, G., and W. Halpern. Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats. Am. J. Physiol.254:H28-H33, 1988.

    Google Scholar 

  26. Pohl, U., J. Holtz, R. Busse, and E. Bassenge. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension8:37-44, 1986.

    Google Scholar 

  27. Porret, C. A., N. Stergiopulos, D. Hayoz, H. R. Brunner, and J. J. Meister. Simultaneous ipsilateral and contralateral measurements of vasomotion in conduit arteries of human upper limbs. Am. J. Physiol.269:H1852-H1858, 1995.

    Google Scholar 

  28. Roer, R. D., and R. M. Dillaman. Decreased femoral arterial flow during simulated microgravity in the rat. J. Appl. Physiol.76:2125-2129, 1994.

    Google Scholar 

  29. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flowinduced release of endothelium-derived relaxing factor. Am. J. Physiol.250:H1145-H1149, 1986.

    Google Scholar 

  30. Shimoda, L. A., N. A. Norins, D. C. Jeutter, and J. A. Madden. Flow-induced responses in piglet isolated cerebral arteries. Pediatr. Res.39:574-583, 1996.

    Google Scholar 

  31. Sipkema, P., P. J. W. van der Linden, N. Hoogerwerf, and N. Westerhof. Does the endothelium play a role in flowdependent constriction? A study in the isolated rabbit femoral artery.J. Vasc. Res.26:368-376, 1989.

    Google Scholar 

  32. Sipkema, P., P. J. W. van der Linden, J. Fanton, and R. D. Latham. Responses to mechanical stimuli of isolated basilar and femoral arteries of the Rhesus monkey are different. Heart Vessels11:18-26, 1996.

    Google Scholar 

  33. Smiesko, V., J. Kozik, and S. Doleschel. Role of endothelium in the control of arterial diameter by blood flow. J. Vasc. Res.22:247-251, 1985.

    Google Scholar 

  34. Smiesko, V., D. J. Lang, and P. C. Johnson. Dilator response of rat mesenteric arcading arterioles to increased blood flow velocity. Am. J. Physiol.257:H1958-H1965, 1989.

    Google Scholar 

  35. Snow, H. M., S. J. McAuliffe, J. A. Moors, and R. Brownlie. The relationship between blood flow and diameter in the iliac artery of the anaesthetized dog: The role of endotheliumderived relaxing factor and shear stress. Exp. Physiol.79:635-645, 1994.

    Google Scholar 

  36. Tesfamariam, B., and W. Halpern. Modulation of adrenergic responses in pressurized resistance arteries by blood flow. Am. J. Physiol.253:H1112-H1119, 1987.

    Google Scholar 

  37. Véquaud, P., and J. L. Freslon. Components of flow-induced dilation in rat perfused coronary artery. Cell. Biol. Toxicol.12:227-232, 1996.

    Google Scholar 

  38. Zygmunt, P. M., T. Ryman, and E. D. Högestätt. Regional differences in endothelium-dependent relaxation in the rat: Contribution of nitric oxide and nitric oxide-independent mechanisms. Acta Physiol. Scand.155:257-266, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porret, CA., Stergiopulos, N. & Meister, JJ. Flow-driven Diameter Response in Rat Femoral Arteries Perfused In Vitro . Annals of Biomedical Engineering 26, 526–533 (1998). https://doi.org/10.1114/1.99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.99

Navigation