Skip to main content
Log in

Sensitivity Analysis for Evaluating Nonlinear Models of Lung Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a combined theoretical and numerical procedure for sensitivity analyses of lung mechanics models that are nonlinear in both state variables and parameters. We apply the analyses to a recently proposed nonlinear lung model which incorporates a wide range of potential nonlinear identification conditions including nonlinear viscoelastic tissues, airway inhomogeneities via a parallel airway resistance distribution function, and a nonlinear block-structure paradigm. Additionally, we examine a system identification procedure which fits time- and frequency-domain data simultaneously. Model nonlinearities motivate sensitivity analyses involving numerical approximation of sensitivity coefficients. Examination of the normalized sensitivity coefficients provides direct insight on the relative importance of each model parameter, and hence the respective mechanism. More formal quantification of parameter uniqueness requires approximation of the paired and multidimensional parameter confidence regions. Combined with parameter estimation, we use the sensitivity analyses to justify tissue nonlinearities in modeling of lung mechanics for healthy and airway constricted conditions, and to justify both airway inhomogeneities and tissue nonlinearities during broncoconstriction. The tools in this paper are general and can be applied to a wide class of nonlinear models. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Avanzolini, G., and P. Barbini. A versatile identification method applied to analysis of respiratory mechanics. IEEE Trans. Biomed. Eng. 31:520-526, 1984.

    Google Scholar 

  2. Barbini, P., A. Cappello, and G. Cevenini. Real-time tracking of breathing parameters in mechanically ventilated dogs. In: Proceedings of the 10th Annual IEEE-EMBS Conference, 1988, pp. 700-703.

  3. Barbini, P., G. Cevenini, K. R. Lutchen, and M. Ursino. Estimating respiratory mechanical parameters of ventilated patients: A critical study in the routine intensive care unit. Med. Biol. Eng. Comput. 32:153-160, 1994.

    Google Scholar 

  4. Bard, Y. Nonlinear Parameter Estimation. New York: Academic, 1974.

    Google Scholar 

  5. Barnas, G., D. Stamenovic, and K. R. Lutchen. Lung and chest wall impedance in the dog in the normal range of breathing: Effects of pulmonary edema. J. Appl. Physiol. 73: 1046-1049, 1992.

    Google Scholar 

  6. Barnas, G. M., D. Stamenovic, K. R. Lutchen, and C. F. Mackenzie. Lung and chest wall impedances in the dog: Effects of frequency and tidal volume. J. Appl. Physiol. 72:87-93, 1991.

    Google Scholar 

  7. Bates, J. H. T., and A. M. Lauzon. A nonstatistical approach to estimating confidence intervals about model parameters: Application to respiratory mechanics. IEEE Trans. Biomed. Eng. 39:94-100, 1992.

    Google Scholar 

  8. Csendes, T. Nonlinear parameter estimation by global optimization-efficiency and reliability. Acta Cyber. 8:361- 370, 1988.

    Google Scholar 

  9. Hantos, Z., A. Adamicza, E. Govaerts, and B. Daroczy. Mechanical impedances of lungs and chest wall in the cat. J. Appl. Physiol. 73:427-433, 1992.

    Google Scholar 

  10. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168-178, 1992.

    Google Scholar 

  11. Hildebrandt, J. Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J. Appl. Physiol. 28:365-372, 1970.

    Google Scholar 

  12. Lauzon, A. M., and J. H. T. Bates. Estimation of timevarying respiratory mechanical parameters by recursive least squares. J. Appl. Physiol. 71:1159-1165, 1991.

    Google Scholar 

  13. Lutchen, K. R., and H. Gillis. Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J. Appl. Physiol. 83(4):1192-1201, 1997.

    Google Scholar 

  14. Lutchen, K. R., Z. Hantos, F. Petak, A. Adamicza, and B. Suki. Airway inhomogeneities contribute to apparent lung tissue resistance during constriction. J. Appl. Physiol. 80:1841-1849, 1996.

    Google Scholar 

  15. Lutchen, K. R., and A. C. Jackson. Statistical measures of parameter estimates from models fit to respiratory impedance data: Emphasis on joint variabilities. IEEE Trans. Biomed. Eng. 33:1000-1010, 1986.

    Google Scholar 

  16. Lutchen, K. R., and A. C. Jackson. Confidence bounds on respiratory mechanical properties estimated from transfer versus input impedance in humans versus dogs. IEEE Trans. Biomed. Eng. 39:644-650, 1992.

    Google Scholar 

  17. Lutchen, K. R., B. Suki, Q. Zhang, F. Peták, B. Daroczy, and Z. Hantos. Airway and tissue mechanics during physiological breathing and broncoconstriction in dogs. J. Appl. Physiol. 77:373-385, 1994.

    Google Scholar 

  18. MATLAB and SIMULINK Manuals 4.0, MatWorks Inc., 1993.

  19. Navajas, D., S. Mijailovich, G. M. Glass, D. Stamenovic, and J. J. Fredberg. Dynamic response of the isolated passive rat diaphragm strip. J. Appl. Physiol. 73:2681-2692, 1992.

    Google Scholar 

  20. Peslin, R., C. Saunier, and M. Marchand. Analysis of lowfrequency lung impedance in rabbits with nonlinear models. J. Appl. Physiol. 79:771-780, 1995.

    Google Scholar 

  21. Peslin, R., M. Rotger, R. Farre, and D. Navajas. Assessment of respiratory pressure-volume nonlinearity in rabbits during mechanical ventilation. J. Appl. Physiol. 80:1637-1648, 1996.

    Google Scholar 

  22. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press, 1992.

    Google Scholar 

  23. Rotger, M., R. Peslin, E. Oostveen, and C. Gallina. Confi-dence intervals of respiratory mechanical properties derived from transfer impedance. J. Appl. Physiol. 70:2432-2438, 1991.

    Google Scholar 

  24. Suki, B., and K. R. Lutchen. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: Applications to respiratory mechanics, IEEE Trans. Biomed. Eng. 39:1142-1151, 1992.

    Google Scholar 

  25. Suki, B., H. Yuan, Q. Zhang, and K. R. Lutchen. Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J. Appl. Physiol. 82:1349-1359, 1997.

    Google Scholar 

  26. Suki, B., Q. Zhang, and K. R. Lutchen. Relationship between frequency and amplitude dependence in the lung: A nonlinear block-structured modeling approach. J. Appl. Physiol. 79:660-671, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Suki, B. & Lutchen, K.R. Sensitivity Analysis for Evaluating Nonlinear Models of Lung Mechanics. Annals of Biomedical Engineering 26, 230–241 (1998). https://doi.org/10.1114/1.117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.117

Navigation