Skip to main content
Log in

Regional transit time estimation from image residue curves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Methods for estimating regional flow from digital angiography or dynamic computed tomography images require determination of indicator mean transit time (\(\bar t\)) through a region-of-interest (ROI). We examine how the ROI kinematics and input dispersion influence the recovery of\(\bar t\) using a computer-simulated vessel network representing that which might occur in a real organ. The network simulates flow through a large artery branching into two small arteries, each feeding a system of smaller vessels intended to represent capillaries and small vessels below the resolution of the imaging system. The capillaries are drained by a similar system of veins. Concentration curves measured over the inlet to the network and microvascular ROI residue curves are simulated. When the area-height ratio of the microvascular ROI curve is used and all of the indicator is contained within the ROI for at least one time point,\(\bar t\) is recovered exactly. As the size of the ROI is reduced or the inlet concentration curve becomes more dispresed, the error in the recovery of\(\bar t\) grows. By first deconvolving the inlet concentration curve from the microvascular ROI curve, and then calculating the area-height ratio,\(\bar t\) is recovered accurately. If the inlet concentration curve becomes more dispersed between its measured site and the actual inlet to the ROI, or if the flow distribution within the ROI is changed, the estimation of\(\bar t\) can be degraded. To put the simulations in perspective relative to an example of image data, the methods were applied to microfocal x-ray angiography data obtained from a ⊃700 μm canine pulmonary artery and vein, the surrounding microvasculature and the inlet lobar arterial cannula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Axel, L. Cerebral blood flow determination by rapidsequence computed tomography. Radiology 137:679–686; 1980.

    CAS  PubMed  Google Scholar 

  2. Axel, L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest. Radiol. 18:94–99; 1983.

    CAS  PubMed  Google Scholar 

  3. Bassingthwaighte, J.B.; Raymond, G.R.; and Chan, J.I.S. Principles of tracer kinetics. In: Nuclear Cardiology: State of the Art and Future Directions edited by B. L. Zaret and G.A. Beller. St. Louis: Mosby-Year Book, 1993, pp. 3–23.

    Google Scholar 

  4. Becker, R.A.; Chambers, J.M.; and Wilks, A.R.: The New S Language. Pacific Grove, California: Wadsworth & Brooks/Cole, 1988.

    Google Scholar 

  5. Bronikowski, T.A.; Dawson, C.A.; and Linehan, J.H. Model free deconvolution techniques for estimating vascular transport function. Int. J. Biomed. Comput. 14:411–429; 1983.

    Article  CAS  PubMed  Google Scholar 

  6. Capen, R.L.; Latham, L.P.; and Wagner, W.W. Jr. Comparison of direct and indirect measurements of pulmonary capillary transit times. J. Appl. Physiol. 62:1150–1154; 1987.

    CAS  PubMed  Google Scholar 

  7. Clough, A.V.; Cui, D.; Linehan, J.H.; Krenz, G.S.; Dawson, C.A.; Maron, M.B. Model-free deconvolution of recirculating indicator concentration curves. J. Appl. Physiol. 74:1444–1453; 1993.

    CAS  PubMed  Google Scholar 

  8. Clough, A.V.; Krenz, G.S.; Owens, M.; Al-Tinawi, A.; Dawson, C.A.; Linehan, J.H. An algorithm for angiographic estimation of blood vessel diameter. J. Appl. Physiol. 71:2050–2058; 1991.

    CAS  PubMed  Google Scholar 

  9. Dawson, C.A.; Bronikowski, T.A.; Linehan, J.H.; and Rickaby, D.A. Distribution of vascular pressure and resistance in the lung. J. Appl. Physiol. 64:274–284; 1988.

    CAS  PubMed  Google Scholar 

  10. Eigler, N.L.; Pfaff, J.M.; Zeiher, A.; Whiting, J.S.; and Forrester, J.S. Digital angiographic impulse response analysis of regional myocardial perfusion: Linearity, reproducibility, accuracy, and comparison with conventional indicator dilution curve parameters in phantom and canine models. Circ. Res. 64:853–866; 1989.

    CAS  PubMed  Google Scholar 

  11. Eke, A.; Hutiray, G.; and Kovách, A.G.B. Induced hemodilution detected by reflectometry for measuring microregional blood flow and blood volume in cat brain cortex. Am. J. Physiol. 236:H759-H768; 1979.

    CAS  PubMed  Google Scholar 

  12. Erikson, U.; Lindgren, P.G.; Löfroth, P.O.; Ruhn, G.; and Wolgast, M. Measurements of total and regional renal blood flow by videodensitometry. Acta Radiologica Diagnosis 18: 225–234; 1977.

    CAS  PubMed  Google Scholar 

  13. Gonzalez-Fernandez, J.M. Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ. Res. 10:409–428; 1962.

    CAS  PubMed  Google Scholar 

  14. Jaschke, W.; Gould, R.G.; Assimakopoulos, P.A.; Lipton, M.J. Flow measurements with a high-speed computed tomography scanner. Med. Phys. 14:238–243; 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Krenz, G.S.; Linehan, J.H.; and Dawson, C.A. A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72:2225–2237; 1992.

    CAS  PubMed  Google Scholar 

  16. Larson, K.B.; Perman, W.H.; Perlmuttere, J.S.; and Gado, M.H. Tracer-kinetic analysis for measuring regional cerebral-blood flow by dynamic nuclear magnetic resonance imaging. Report from Biomedical Computer Laboratory, Washington University School of Medicine, St. Louis, Missouri.

  17. Lassen, N.A. and Perl, W. Tracer Kinetic Methods in Medical Physiology New York: Raven, 1979.

    Google Scholar 

  18. Mullani, N.A. and Gould, K.L. First-pass measurements of regional blood flow with external detectors. J. Nucl. Med. 24:577–581; 1983.

    CAS  PubMed  Google Scholar 

  19. Palmer, B.M. and McInerney, J.J. Convective-dispersive characteristics of tracer transport calculated from transfer function analysis of biological indicator-dilution curves. Med. Phys. 16:889–895; 1989.

    Article  CAS  PubMed  Google Scholar 

  20. Rumberger, J.A.; Feiring, A.J.; Lipton, M.J.; Higgins, C.B.; Ell, S.R.; and Marcus, M.L. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: A preliminary report. J. Am. Coll. Cardiol. 9:59–69; 1987.

    CAS  PubMed  Google Scholar 

  21. Sheppard, C.W. Basic Principles of the Tracer Method New York: Wiley, 1962, pp. 195–198.

    Google Scholar 

  22. Tomita, M.; Gotoh, F.; Amano, T.; Tanahashi, N.; Kobari, M.; Shinohara, T.; and Mihara, B. Transfer function through regional cerebral cortex evaluated by a photoelectric method. Am. J. Physiol. 245 (Heart Circ. Physiol. 14):385–398; 1983.

    Google Scholar 

  23. Wang, P.M.; Fike, C.D.; Kaplowitz, M.R.; Brown, L.V.; Ayappa, I.; Jahed, M.; and Lai-Fook, S.J. Effects of lung inflation and blood flow on capillary transit time in isolated rabbit lungs. J. Appl. Physiol. 72:2420–2427; 1992.

    CAS  PubMed  Google Scholar 

  24. Wang, T.; Wu, X.; Chung, N.; and Ritman, E.L. Myocardial blood flow estimated by synchronous, multislice, high-speed computed tomography. IEEE Trans. Med. Imag. 8: 70–77; 1989.

    Google Scholar 

  25. Wolfkiel, C.J.; Ferguson, J.L.; Chomka, E.V.; Law, W.R.; Labin, I.N.; Tenzer, M.L.; Booker, M.; and Brundage, B.H. Measurement of myocardial blood flow by ultrafast computed tomography. Circulation 76:1262–1273; 1987.

    CAS  PubMed  Google Scholar 

  26. Wu, X.; Latson, L.A.; Wang, T.; Driscoll, D.J.; EnSing, G.J.; and Ritman, E.L. Regional pulmonary perfusion estimated by high-speed volume scanning CT. Am. J. of Physiol. Imag. 3:73–80; 1988.

    CAS  Google Scholar 

  27. Zierler, K.L. Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16:309–321; 1965.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clough, A.V., Al-Tinawi, A., Linehan, J.H. et al. Regional transit time estimation from image residue curves. Ann Biomed Eng 22, 128–143 (1994). https://doi.org/10.1007/BF02390371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02390371

Key words

Navigation