Skip to main content
Log in

The Role of Scale Stresses in the Sulfidation of Steels

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Several high-temperature processes in chemical,petrochemical, and energy-processing industry arecharacterized by H2S-containing atmospheres,confronting engineers with severe corrosion attack ofthe metallic components. Sulfidation is observed onmaterials used for heat exchangers within theheat-recovery zones. The damage is originated not onlyby the relatively fast growth rates of the sulfidescales, but is also due to the loss of their limitedprotective effect by cracking. Scale failure, as aconsequence of stresses generated during scale growthand by temperature changes, was investigated on a carbon steel, a low-chromium steel (1Cr-0.4Mo, T12),a ferritic-chromium steel (12Cr-1Mo), and on austeniticsteel (18Cr-9Ni, AISI 321). The experiments in thetemperature range 400-600°C (700°C), withsubsequent cooling to ambient temperature, wereaccompanied by acoustic-emission measurements in orderto detect scale cracking. Critical parameters for scalefailure are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Schulte, A. Rahmel, and M. Schütze, Oxid.Met. 49, 33 (1998).

    Google Scholar 

  2. M. Schulte, Die Rolle vonDeckschichtspannungen bei der Hochtemperatur-Sulfidierung von Stählen des Apparatebaus, Berichte aus der Werkstofftechnik, Shaker Verlag, Aachen, 1997.

  3. M. Schütze, High-Temperature Corrosion of AdvancedMaterials and Protective Coatings, Y. Saito, B. Onay, and T. Maruyama, eds. (Elsevier, Amsterdam, 1992), p. 39.

    Google Scholar 

  4. N. F. Rhines and J. S. Wolf, Metall. Trans. 1, 1701 (1970).

    Google Scholar 

  5. F. Gesmundo, F. Viani, W. Znamirowski, K. Godlewski, and F. Bregani, Werkst. Korros. 43, 83 (1992).

    Google Scholar 

  6. M. I. Manning, Corr. Sci. 21,301 (1981).

    Google Scholar 

  7. J. K. Tien and J. M. Davidson, in Stress Effectsand the Oxidation of Metals, J. V. Cathcart, ed. (TMS-AIME, New York, 1975), p. 200.

    Google Scholar 

  8. A. M. Huntz, Mat. Sci. Technol. 4,1079 (1988).

    Google Scholar 

  9. E. Metcalfe and M. I. Manning, The Spalling ofSteam-Grown Oxide from Austenitic and Ferritic Alloys, Report RDy Ly Ry 1966, Central Electricity Generating Board (CERL, Leatherhead, 1977).

    Google Scholar 

  10. M. Schütze, Mechanical properties of oxide scales, Oxid. Met.44, 1 (1995).

    Google Scholar 

  11. J. Armitt et al., The Spalling of Steam-Grown Oxide from Superheater and Reheater Tube Steels, EPRI Report FP-686 (Electric Power Research Inst., Palo Alto, California, 1978).

    Google Scholar 

  12. M. I. Manning and E. Metcalfe, Proc. 6th Europ. Congr. Met. Corr.(London, 1977), p. 121.

  13. M. D. Thoughless, J. W. Hutchinson,and E. G. Liniger, Acta Metall. Mat. 40, 2639 (1992).

    Google Scholar 

  14. A.G. Evans, G. B. Crumley, and R. E. Demaray, Oxid. Met. 20, 193 (1983).

    Google Scholar 

  15. J. Robertson and M. I. Manning, Mat. Sci. Technol.6, 81 (1990).

    Google Scholar 

  16. A. Brenner and S. Senderoff, J. Res. Nat.Bur. Stand. 42, 105 (1949).

    Google Scholar 

  17. S. R. J. Saunders, H. E. Evans, M. Li, D. D. Gohil, and S. Osgerby, Oxid. Met. 48, 189 (1997).

    Google Scholar 

  18. W. Christl, A. Rahmel, and M. Schütze, Oxid. Met.31, 1 (1989).

    Google Scholar 

  19. M. Schütze, Protective Oxide Scales andTheir Breakdown (Wiley, Chichester, 1997).

    Google Scholar 

  20. Gmehlin,Handbuch der Anorganischen Chemie, Vol. 59; Eisen, part A, 8 edn. (Verlag Chemie, Berlin, 1939), p. 1168.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, M., Schutze, M. The Role of Scale Stresses in the Sulfidation of Steels. Oxidation of Metals 51, 55–77 (1999). https://doi.org/10.1023/A:1018850102074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018850102074

Navigation