Skip to main content
Log in

Mechanisms of high-temperature corrosion in helium containing small amounts of impurities. I. Theoretical and experimental characterization of the gas phase

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Helium used as a coolant in high-temperature gas-cooled reactors contains gaseous impurities that cause various corrosion effects. To determine the mechanisms of the reactions that occur in this complex gas phase, a theoretical and experimental characterization of the gas is given in part 1. To obtain estimates of the reactions that are possible in principle and to derive the basis for the interpretation of the experimental results, thermodynamic considerations on gas equilibrium and partial equilibria are presented. Because of the extremely low concentrations of the impurities, diffusion processes within the gas may become rate-controlling. This requires a consideration of the flow conditions. The reactions of Pt, Cr, Cr2O3 and Cr3C2 with helium-based atmospheres containing impurities are investigated by means of a mass spectrometric gas analysis with respect to temperature and flow rate. A set of six reactions is derived from the results and discussed in detail. The application of these equations to describe the high-temperature corrosion phenomena of a technical nickel-base alloy is dealt with in part 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nickel, T. Kondo, and P. L. Rittenhouse,Nucl. Technol. 66, 12 (1984).

    Google Scholar 

  2. H. Nickel,Chem. Ing. Technol. 49, 639 (1977).

    Google Scholar 

  3. H. Schuster, R. Bauer, and L. Graham,Proceedings of the Eighth International Congress on Metallic Corrosion (DECHEMA, Frankfurt, 1981), p. 1601.

    Google Scholar 

  4. F. N. Mazandarany and P. L. Rittenhouse,Nucl. Technol. 29, 406 (1976).

    Google Scholar 

  5. W. J. Quadakkers and H. Schuster,Werkst. Korr. 36, 141 (1985).

    Google Scholar 

  6. W. J. Quadakkers and H. Schuster,Nucl. Technol. 66, 383 (1984).

    Google Scholar 

  7. L. W. Graham and K. G. E. Brenner,Proceedings of the Eighth International Congress on Metallic Corrosion (DECHEMA, Frankfurt, 1981), p. 1607.

    Google Scholar 

  8. H. J. Christ, D. Schwanke, Th. Uihlein, and H. G. Sockel,J. Phys. E 19, 793 (1986).

    Google Scholar 

  9. R. H. Kane and P. D. Goodell,J. Testing Eval. 10, 286 (1982).

    Google Scholar 

  10. C. S. Giggins and F. S. Pettit,Oxid. Met. 14, 363 (1980).

    Google Scholar 

  11. I. Barin and O. Knacke,Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  12. S. R. Brinkley,J. Chem. Phys. 14, 583 (1946).

    Google Scholar 

  13. W. B. White, S. M. Johnson, and G. B. Danzig,J. Chem. Phys. 28, 751 (1958).

    Google Scholar 

  14. F. J. Zeleznik and S. Gordon,Indus. Eng. Chem. 60, 27 (1968).

    Google Scholar 

  15. R. H. Kane,Corrosion NACE 36, 112 (1980).

    Google Scholar 

  16. J. P. Pfeifer, Technische Notiz IRW-TN-123/82, KFA Jülich (Jülich, 1982).

    Google Scholar 

  17. I. F. Globubev,Viscosity of Gases and Gas Mixtures (Bindery, Jerusalem, 1970).

    Google Scholar 

  18. H. Brauer,Stoffaustausch (Sauerländer, Aarau, Frankfurt, 1971).

    Google Scholar 

  19. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird,Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  20. H. J. Christ and H. G. Sockel,High Temp. Technol. 5, 123 (1987).

    Google Scholar 

  21. H. J. Grabke, K. J. Best, and A. Gala,Werkst. Korr. 21, 911 (1970).

    Google Scholar 

  22. H. J. Grabke,Ber. Bunsenges. 69, 48 (1965).

    Google Scholar 

  23. H. J. Grabke,Ber. Bunsenges. 71, 1067 (1967).

    Google Scholar 

  24. J. P. Pfeifer, Technische Notiz IRW-TN-46/82, KFA Jülich (Jülich, 1982).

    Google Scholar 

  25. P. Münster and H. J. Grabke,Arch. Eisenhüttenwes. 51, 319 (1980).

    Google Scholar 

  26. H. J. Grabke,Ber. Bunsenges. 69, 409 (1965).

    Google Scholar 

  27. H. J. Grabke,Met. Trans,1, 2972 (1970).

    Google Scholar 

  28. H. J. Grabke, E. M. Müller, and G. Konzos,Scripta Met. 14, 159 (1980).

    Google Scholar 

  29. H. J. Grabke and G. Tauber,Arch. Eisenhüttenwes. 46, 215 (1975).

    Google Scholar 

  30. S. R. Shatgnski and H. J. Grabke,Arch. Eisenhüttenwes. 49, 129 (1978).

    Google Scholar 

  31. D. S. Williams, R. Möller, and H. J. Grabke,High. Temp. Sci. 14, 33 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, H.J., Schwanke, D., Uihlein, T. et al. Mechanisms of high-temperature corrosion in helium containing small amounts of impurities. I. Theoretical and experimental characterization of the gas phase. Oxid Met 30, 1–26 (1988). https://doi.org/10.1007/BF00656642

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656642

Key words

Navigation