Skip to main content
Log in

Semiclassical particle-like description of optical amplifier noise

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A semiclassical model of optical amplifier noise in terms of photon-particle description and simple calculations is developed. The active-medium amplifier is modelled as a stochastic photon multiplier, whose statistical properties are derived from well-known results about branching processes. The effects on amplifier output noise caused by random amplification of input photons and by spontaneous emission are treated separately, and it is thus possible to ascribe output noise terms to specific physical mechanisms. In view of this, the 3 dB noise figure limit of optical amplifiers can be entirely ascribed to optical gain randomness. Since the results obtained here are coincident with those from quantum theories, it is concluded that the randomness of optical gain in a particle-like description is the correct semiclassical counterpart of vacuum-field amplification in wave-like formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Desurvire, Erbium-doped fiber amplifiers: principle and applications (Wiley, New York, 1994).

    Google Scholar 

  2. R. Loudon, The quantum theory of light (Clarendon Press, Oxford, 1983).

    Google Scholar 

  3. Y. Yamamoto, IEEE J. Quantum Electron. 16 (1980) 1073.

    Google Scholar 

  4. T. Mukai, Y. Yamamoto and T. Kimura, IEEE J. Quantum Electron. 18 (1982) 1560.

    Google Scholar 

  5. R. Loudon, IEEE J. Quantum Electron. 21 (1985) 766.

    Google Scholar 

  6. N. A. Olsson, J. Lightwave Technol. 7 (1989) 1071.

    Google Scholar 

  7. S. Donati and G. Giuliani, IEEE J. Quantum Electron. 33 (1997) 1481.

    Google Scholar 

  8. W. Feller, An introduction to probability theory and its applications, (Wiley, New York, 1957).

    Google Scholar 

  9. D. G. Kendall, Ann. Math. Statist. 19 (1948) 1.

    Google Scholar 

  10. P. Diament and M. C. Teich, IEEE J. Quantum Electron. 28 (1992) 1325.

    Google Scholar 

  11. T. Li and M. C. Teich, IEEE J. Quantum Electron. 29 (1993) 2568.

    Google Scholar 

  12. G. L. Cariolaro, P. Franco, M. Midrio and G. L. Pierobon, IEEE J. Quantum Electron. 31 (1995) 1114.

    Google Scholar 

  13. G. M. D'ariano, Int. J. Mod. Phys. B 6 (1992) 1291.

    Google Scholar 

  14. R. J. Mcintire, IEEE Trans. Electron Dev. 13 (1966) 164.

    Google Scholar 

  15. D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer, Berlin, 1991).

    Google Scholar 

  16. L. Mandel, Proc. Phys. Soc. 72 (1958) 1037.

    Google Scholar 

  17. L. Mandel, Proc. Phys. Soc. 74 (1959) 233.

    Google Scholar 

  18. A. Van der ziel, Noise. Sources, characterization and measurement (Prentice-Hall, Englewood cliffs, NJ, 1970).

    Google Scholar 

  19. A. Yariv, Quantum electronics, 3rd Ed., Wiley (1989).

  20. H. A. Haus and J. A. Mullen, Physical Review 128 (1962) 2407.

    Google Scholar 

  21. C. M. Caves, Physical Review D 26 (1982) 1817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, G. Semiclassical particle-like description of optical amplifier noise. Optical and Quantum Electronics 31, 367–376 (1999). https://doi.org/10.1023/A:1006953800362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006953800362

Keywords

Navigation