Skip to main content
Log in

Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. kinetic properties of the basal and trypsin-stimulated activities

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Basal and trypsin-stimulated adenosine triphosphatase activities ofEscherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5mm, Vmax (minus trypsin) = 1.6µmol·min−1·mg protein−1, Vmax (plus trypsin) = 2.44µmol·min−1·mg protein−1; for the soluble ATPase: [S0.5] = 1.2mm, Vmax (-trypsin) = 4µmol·min−1·mg protein−1; Vmax (+trypsin) = 6.6µmol·min−1·mg protein−1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not.

Saturation for ATP at constant Mg2+ concentration (4mm) showed two sites (groups) with different K ms: at low ATP the values were 0.38 and 1.4mm for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20mm, respectively. Mg2+ saturation at constant ATP (8mm) revealed michaelian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulatesE. coli ATPase by acting on some site(s) involved in Mg2+ binding.

Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors ofEscherichia coli ATPase. The Ki values for Pi were 1.6 ± 0.1mm for the membrane-bound ATPase and 1.3 ± 0.1mm for the enzyme in soluble form, the Ki values for ADP being 1.7mm and 0.75mm for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4mm) inhibited the membrane-bound enzyme by 60–70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20µ m) inhibited both states ofE. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Racker, E. Federation Proc. 26, 1335–1340 (1967).

    Google Scholar 

  2. Vambutas, V. K. and Racker, E. J. Biol. Chem. 240, 2660–2667 (1965).

    Google Scholar 

  3. Berger, E. A. Proc. Nat. Acad. Sci. USA 70, 1514–1518 (1973).

    Google Scholar 

  4. Hasselbach, W. in Progress in Biophysics and Molecular Biology (Butler, J. A. V. and Huxley, H. E., editors) vol. 14, pp. 167–222, Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfurt (1964).

    Google Scholar 

  5. Muñoz, E., Nachbar, M. S., Schor, M. T. and Salton, M. R. J. Biochem. Biophys. Res. Commun. 32, 539–546 (1968).

    Google Scholar 

  6. Andreu, J. M., Albendea, J. A. and Muñoz, E. Eur. J. Biochem. 37, 505–515 (1973).

    Google Scholar 

  7. Weltman, J. K., and Dowben, R. M. Proc. Nat. Acad. Sci. USA 70, 3230–3234 (1973).

    Google Scholar 

  8. Carreira, J., Leal, J. A., Rojas, M. and Muñoz, E. Biochim. Biophys. Acta 307, 541–556 (1973).

    Google Scholar 

  9. Tzagoloff, A. in Current Topics in Membranes and Transport (Bronner, F. and Kleinzeller, A., editors) vol. 2, pp. 157–205, Academic Press, New York and London (1971).

    Google Scholar 

  10. Harold, F. M. and Baarda, J. R. J. Biol. Chem. 244, 2261–2268 (1969).

    Google Scholar 

  11. Muñoz, E., Salton, M. R. J., Ng. M. H. and Schor, M. T. Eur. J. Biochem. 7, 490–501 (1969).

    Google Scholar 

  12. Farron, F. and Racker, E. Biochemistry 9, 3829–3836 (1970).

    Google Scholar 

  13. West, I. C. and Mitchell, P. FEBS lett. 40, 1–4 (1974).

    Google Scholar 

  14. McCarty, R. E. and Racker, E. J. Biol. Chem. 243, 129–137 (1968).

    Google Scholar 

  15. Lastras, M. and Muñoz, E. FEBS lett. 14, 69–72 (1971).

    Google Scholar 

  16. Lastras, M. and Muñoz, E. FEBS lett. 21, 109–112 (1972).

    Google Scholar 

  17. Pullman, M. E. and Monroy, G. C. J. Biol. Chem. 238, 3762–3769 (1963).

    Google Scholar 

  18. Nelson, N., Nelson, H. and Racker, E. J. Biol. Chem. 247, 7657–7662 (1972).

    Google Scholar 

  19. Muñoz, E., Lastras, M., Carreira, J. and Andreu, J. M. 1st International Congress for Bacteriology, Abstracts, Vol. II, p. 100 (1973).

  20. Lastras, M. and Muñoz, E. J. Bacteriol. 119, 593–601 (1974).

    Google Scholar 

  21. Harold, F. M., Baarda, J. R., Baron, C. and Abrams, A. J. Biol. Chem. 244, 2261–2268 (1968).

    Google Scholar 

  22. Simoni, R. D. and Shallenberger, M. K. Proc. Nat. Acad. Sci. USA 69, 2663–2667 (1972).

    Google Scholar 

  23. Nelson, N., Nelson, H. and Racker, E. J. Biol. Chem. 247, 6506–6516 (1972).

    Google Scholar 

  24. Roisin, M-P. and Kepes, A. Biochim. Biophys. Acta 275, 333–346 (1972).

    Google Scholar 

  25. Davies, P. L. and Bragg, P. D. Biochim. Biophys. Acta 266, 273–284 (1972).

    Google Scholar 

  26. Carmeli, C. and Lifshitz, Y. Biochim. Biophys. Acta 267, 86–95 (1972).

    Google Scholar 

  27. Schnebli, H. P. and Abrams, A. J. Biol. Chem. 245 1115–1121 (1970).

    Google Scholar 

  28. Evans, D. J. J. Bacteriol. 100, 914–922 (1969).

    Google Scholar 

  29. Evans, D. J. J. Bacteriol. 104, 1203–1212 (1970).

    Google Scholar 

  30. Roisin, M-P and Kepes, A. Biochim. Biophys. Acta 305, 249–259 (1973).

    Google Scholar 

  31. Kobayashi, H. and Anraku, Y. J. Biochem. Tokyo 71, 387–399 (1972).

    Google Scholar 

  32. Hanson, R. L. and Kennedy, E. P. J. Bacteriol. 114, 772–781 (1973).

    Google Scholar 

  33. de Corao, M. C., Serrano, J. A., Leal, J. A., Puig, J. and Muñoz, E. Microbiologia Española, in press (1974).

  34. Kaback, H. R. in Methods in Enzymology (Jakoby, W. B., editor) Vol. XXII, pp. 99–120. Academic Press, New York and London (1971).

    Google Scholar 

  35. Bray, G. A. Anal. Biochem. 1, 279–285 (1960).

    Google Scholar 

  36. Lowry, O. H. Rosebrough, H. J., Farr, A. L. and Randall, R. J. J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  37. Cook, R. A. and Koshland, D. E. Biochemistry 9, 3337–3342 (1970).

    Google Scholar 

  38. Hoffman, J. F. in Organisation of Energy-Transducing Membranes (Nakao, M. and Packer, L., eds.) pp. 9–21, University Park Press, Baltimore, London, Tokyo (1973).

    Google Scholar 

  39. Hammes, G. and Hilborn, D. A. Biochim. Biophys. Acta 233, 580–590 (1971).

    Google Scholar 

  40. Carmeli, C. Biochim. Biophys. Acta 189, 256–266 (1969).

    Google Scholar 

  41. Mirsky, R. and Barlow, V. Biochim. Biophys. Acta 24, 834–845 (1971).

    Google Scholar 

  42. Gross, R. and Coles, N. W. J. Bacteriol. 95, 1322–1326 (1968).

    Google Scholar 

  43. Vigers, G. A. and Ziegler, F. D. Biochem. Biophys. Res. Commun. 30, 83–88 (1968).

    Google Scholar 

  44. Adolfsen, R. and Moudrianakis, E. Biochemistry 12, 2926–2932 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreira, J., Muñoz, E. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. kinetic properties of the basal and trypsin-stimulated activities. Mol Cell Biochem 9, 85–95 (1975). https://doi.org/10.1007/BF01732200

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732200

Keywords

Navigation