Skip to main content
Log in

Regulatory mechanisms of fatty acid isomers on adenylate cyclase activity from Ceratitis capitata brain

  • Original Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The regulatory properties of saturated and unsaturated fatty acids on membrane-bound preparations of adenylate cyclase from Ceratitis capitata brains have been investigated. Saturated long-chain fatty acids do not exhibit any significant modification of the enzyme activity of the enzyme preparations but the presence of one, two or three double bonds in the 18C chain provokes an inhibitory effect. Binding of oleate and linoleate to the membrane enzyme preparation is non-specific and simply stochiometric in the range of concentrations examined. Studies of cis and trans isomers of the double-bond isomers, 18:1 (n−9) and 18:1(n−11), reveal the higher inhibitory effect of the cis isomers on membrane-bound adenylate cyclase of the insect brain. The inhibitory effect of cis-vaccenate in the basal conditions of the enzyme assay is identical to the effects obtained in the presence of GTP and octopamine.

Insect membrane preparations were labeled with 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe and treated with cis and trans 18:1(n−9) and 18:1 (n−11). The fluorescence polarization parameter was measured, from which the microviscosity of the preparations was calculated; microviscosity of the membranes treated with both cis isomers decreased in a clear extent whereas it is not influenced by the trans isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber G, Lea MA, Convery HJH, Stamm NB: Adv Enzyme Regul 5:257–298, 1967.

    Google Scholar 

  2. Lea MA, Weber G: J Biol Chem 243:1096–1102, 1968.

    Google Scholar 

  3. Masoro EJ: Ann NY Acad Sci 131:199–206, 1965.

    Google Scholar 

  4. Henderson TO, McNeill JJ: Biochem Biophys Res Commun 25:662–669, 1966.

    Google Scholar 

  5. Fain JN, Shepherd RE: J Biol Chem 250:6586–6592, 1975.

    Google Scholar 

  6. Malgieri JA, Shepherd RE, Fain JN: J Biol Chem 250:6593–6598, 1975.

    Google Scholar 

  7. Patton S, Keenan TW: Biochim Biophys Acta 415:273–309, 1975.

    Google Scholar 

  8. Rothman JE, Lenard J: Science 195:743–753, 1977.

    Google Scholar 

  9. Sandra A, Pagano RE: Biochemistry 17:332–338, 1978.

    Google Scholar 

  10. Patzer EJ, Moore NF, Barenholz Y, Shaw JM, Wagner RR: J Biol Chem 253:4544–4550, 1978.

    Google Scholar 

  11. Higgins JA, Evans W H: Biochem J 174:563–567, 1978.

    Google Scholar 

  12. Sinensky M, Minneman KP, Molinoff PB: J Biol Chem 254:9135–9141, 1979.

    Google Scholar 

  13. Engelhard VH, Glaser M, Storm DR: Biochemistry 17:3191–3200, 1978.

    Google Scholar 

  14. Houslay MD, Hesketh TR, Smith GA, Warren GB, Metcalfe JC: Biochim Biophys Acta 436:495–504, 1976.

    Google Scholar 

  15. Sinha AK, Shattil SJ, Colman RW: J Biol Chem 252:3310–3314, 1977.

    Google Scholar 

  16. Hebdon GM, Le Vine III H, Sahyoun NE, Schmitges CJ, Cuatrecasas P: Biophys J 37:41–42, 1982.

    Google Scholar 

  17. Garcia JL, Guillen A, Haro A, Municio AM: Comp Biochem Physiol 7313:751–756, 1982.

    Google Scholar 

  18. Schrock CG, Connor WE: Am J Clin Nutr 109:1759–1765, 1975.

    Google Scholar 

  19. Wood R, Wiegand RD: Lipids 10:746–749, 1975.

    Google Scholar 

  20. Poon R, Richards JM, Clark WR: Biochim Biophys Acta 649:58–66, 1981.

    Google Scholar 

  21. Brivio-Haugland RP, Louis SL, Musch K, Waldeck N, Williams MA: Biochim Biophys Acta 433:150–163, 1976.

    Google Scholar 

  22. Orly J, Schramm M: Proc Natl Acad Sci USA 72:3433–3437, 1975.

    Google Scholar 

  23. Anderson WB, Jaworski CJ: Arch Biochem Biophys 180:374–383, 1977.

    Google Scholar 

  24. Baba A, Lee E, Ohta A, Tatsuno T, Iwata H: J Biol Chem 256:3679–3684, 1981.

    Google Scholar 

  25. Glass DB, Frey II W, Carr DW, Goldberg ND: J Biol Chem 252:1279–1285, 1977.

    Google Scholar 

  26. Salesse R, Garnier J, Leterrier F, Daveloose D, Viret J: Biochemistry 21:1581–1586, 1982.

    Google Scholar 

  27. Fernandez-Sousa JM, Municio AM, Ribera A: Biochim Biophys Acta 231:527–534, 1971.

    Google Scholar 

  28. Catalan RE, Municio AM: Nature 208:1227–1228, 1965.

    Google Scholar 

  29. Garcia JL, Haro A: Comp Biochem Physiol 68C:109–113, 1981.

    Google Scholar 

  30. Garcia JL, Haro A, Municio AM: Comp Biochem Physiol 7013:57–62, 1981.

    Google Scholar 

  31. Holloway PW: Anal Biochem 53:304–308, 1973.

    Google Scholar 

  32. Salomon Y, Londons C, Rodbell M: Anal Biochem 58:541–548, 1974.

    Google Scholar 

  33. Lentz BR, Moore BM, Barrow DA: Biophys J 25:489–494, 1979.

    Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall R: J Biol Chem 193:265–275, 1951.

    CAS  PubMed  Google Scholar 

  35. Wallach D, Pastan I: J Biol Chem 251:5802–5809, 1976.

    Google Scholar 

  36. Hegstrand LR, Minneman KP, Molinoff PB: J Pharmacol Exp Ther 210:215–221, 1979.

    Google Scholar 

  37. Lucas M, Bockaert J: Mol Pharmacol 13:314–322, 1977.

    Google Scholar 

  38. Ross EM, Maguire ME, Sturgill TW, Biltonen RL, Gilman AG: J Biol Chem 252:5761–5775, 1977.

    Google Scholar 

  39. Stadel JM, DeLean A, Lefkowitz RJ: J Biol Chem 255:1436–1441, 1980.

    Google Scholar 

  40. Williams LT, Lefkowitz RJ: J Biol Chem 252:7207–7213, 1977.

    Google Scholar 

  41. Burns TW, Langley PE, Robison GA: Metabolism 24:265–276, 1975.

    Google Scholar 

  42. Hanski E, Rimon G, Levitzki A: Biochemistry 18:846–853, 1979.

    Google Scholar 

  43. Briggs MM, Lefkowitz RJ: Biochemistry 19:4461–4466, 1980.

    Google Scholar 

  44. Hebdon GM, LeVine H, Sahyoun NE, Schmitges CJ, Cuatrecasas P: Proc Natl Acad Sci USA 78:120–123, 1981.

    Google Scholar 

  45. Shinitzky M, Barenholz Y: J Biol Chem 249:2652–2657, 1974.

    Google Scholar 

  46. Shinitzky M, Barenholz Y: BiochimBiophys Acta 515:367–394, 1978.

    Google Scholar 

  47. Riordan JR: In M Kates, A Kuksis (eds), ‘Membrane Fluidity’. Humana Press Inc, Clifton, NJ, 1980, pp 119–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillen, A., Haro, A. & Municio, A.M. Regulatory mechanisms of fatty acid isomers on adenylate cyclase activity from Ceratitis capitata brain. Mol Cell Biochem 65, 83–88 (1984). https://doi.org/10.1007/BF00226022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226022

Keywords

Navigation