Skip to main content
Log in

Effect of Escherichia coli lipopolysaccharide on the glucagon and insulin binding to isolated rat hepatocytes

  • Original Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Number and affinity constant of low affinity binding sites of insulin and glucagon to isolated hepatocytes decreased when the cells were incubated with Escherichia coli 0111:B4 lipopolysaccharide. This effect agrees with a non-specific binding of lipopolysaccharide to hepatocytes, similar to the well-recognized non-specific binding of albumin. Also, binding of different lectins to their glycoprotein receptors did not affect the [14C]lipopolysaccharide interaction with the cell membrane surface. Endotoxin depresses gluconeogenesis from lactate when the precursor was incubated with the cells for short time intervals. The longer the preincubation interval with lipopolysaccharide, the higher the inhibition of gluconeogenesis in the absence and in the presence of glucagon.

The effect of endotoxin was also studied on the glucagon-induced synthesis of cyclic AMP and the glucagon binding. Levels of cyclic AMP and hormone binding decreased with increasing both endotoxin concentrations and preincubation intervals at which cells were in contact with endotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Holpea Y, Olcay J, Kitahama A, Miller RH, Brettschneider L, Drapanos Th, Treso RA, Diluzio N: Surgery 76:423–432, 1974.

    Google Scholar 

  2. Mori K, Matsumoto K, Gans H: Ann Surg 177:159–163, 1973.

    Google Scholar 

  3. Nolan JP: Gastroenterology 69:1346–1356, 1975.

    Google Scholar 

  4. Saba M: Arch Int Med 126:1031–1052, 1970.

    Google Scholar 

  5. Willerson JT, Trelstad RL, Pincus T, Levy SB, Wolff SM: Infect Immun 1:440–445, 1970.

    Google Scholar 

  6. Conde G, Garcia-Barreno P, Municio AM, Suarez A: FEBS Lett 127:115–120, 1981.

    Google Scholar 

  7. Conde G, Garcia-Barreno P, Suarez A: FEBS Lett 112: 89–91, 1980.

    Google Scholar 

  8. Gavilanes J, Lizarbe MA, Municio AM, Oñaderra M: Biochem Biophys Res Commun 101:1228–1232, 1981.

    Google Scholar 

  9. Pagani R, Portoles MT, Municio AM: FEBS Lett 131: 103–107, 1981.

    Google Scholar 

  10. Pagani R, Portolés MT, Díaz-Laviada I, Municio AM: In: Structure & Dynamics of Nucleic Acids, Proteins and Membranes. 1984, p 52 (abstract).

  11. Filkins JP, Cornell RP: Am J Physiol 227:778–781, 1974.

    Google Scholar 

  12. McCallum RE: In: D Schlessinger (ed) Microbiology. Am Soc Microbiol, Washington, 1980, pp 87–90.

    Google Scholar 

  13. Yorek MA, Rufo GA, Ray PD: Biochim Biophys Acta 632:517–526, 1980.

    Google Scholar 

  14. Ellis S: Pharmacol Rev 8:485–562, 1956.

    Google Scholar 

  15. Exton JH, Mallette LE, Jefferson LS, Wong EHA, Friedmann N, Park CR: Am J Clin Nutr 23:993–1003, 1970.

    Google Scholar 

  16. Sutherland EW, Rail TW: Pharmacol Rev 12:265–299, 1960.

    Google Scholar 

  17. Sutherland EW, Robinson GA: Diabetes 18:797–819, 1969.

    Google Scholar 

  18. Garrison JC, Haynes RC Jr: J Biol Chem 248:5333–5343, 1973.

    Google Scholar 

  19. VanDenheede JR, Keppens S, DeWulfe H: FEBS Lett 61:213–217, 1976.

    Google Scholar 

  20. Birnbaum MJ, Fain JN: J Biol Chem 252:528–535, 1977.

    Google Scholar 

  21. Beyner AC, Geelen MJH, Van der Bergh SG: Trends Biochem Sci 5:288–290, 1980.

    Google Scholar 

  22. Blackard WG, Guzelian PS, Small ME: Endocrinology 103:548–553, 1978.

    Google Scholar 

  23. Pilkis SJ, Claus TH, Johnson RA, Park CR: J Biol Chem 250:6328–6336, 1975.

    Google Scholar 

  24. Exton JH: Adv Exp Med Biol 111:125–167, 1979.

    Google Scholar 

  25. Claus TH, Pilkis SJ: Biochim Biophys Acta 421:246–262, 1976.

    Google Scholar 

  26. Romanowska E: Anal Biochem 33:383–389, 1970.

    Google Scholar 

  27. Berry MN, Friend DS: J Cell Biol 43:506–520, 1969.

    Google Scholar 

  28. Thakur AK, Jaffe ML, Robdard D: Anal Biochem 107: 279–295, 1980.

    Google Scholar 

  29. Steiner AL, Parker CW, Kipnis DM: J Biol Chem 247: 1106–1113, 1972.

    Google Scholar 

  30. Abernathy CO, Bhathena SJ, Recant L, Zimmerman HJ, Utili R: Horm Metabol Res 14:468–471, 1982.

    Google Scholar 

  31. Gorden P, Carpentier JL, Freychet P, Le Cam A, Orci L: Science 200:782–784, 1978.

    Google Scholar 

  32. Carpentier JL, Gorden P, Freychet P, Le Cam A, Orci L: J Clin Invest 63:1249–1261, 1979.

    Google Scholar 

  33. Jacobs S, Cuatrecasas P: Ann Rev Pharmacol Toxicol 23:461–479, 1983.

    Google Scholar 

  34. Cherrington AD, Liljenquist JE, Schulman GI, Williams PE, Lacy WW: Am J Physiol 236E:263–271, 1979.

    Google Scholar 

  35. Wharen J, Effenaic S, Luft R, Hagenfelt L, Bjorkman O, Feli GP: J Clin Invest 59:299–307, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagani, R., Portolés, M.T. & Municio, A.M. Effect of Escherichia coli lipopolysaccharide on the glucagon and insulin binding to isolated rat hepatocytes. Mol Cell Biochem 65, 37–44 (1984). https://doi.org/10.1007/BF00226017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226017

Keywords

Navigation