Skip to main content
Log in

Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The fungal toxin brefeldin A (BFA) dissociates coat proteins from Golgi membranes, causes the rapid disassembly of the Golgi complex and potently stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa. These proteins have been identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a novel guanine nucleotide binding protein (BARS-50), respectively. The role of ADP-ribosylation in mediating the effects of BFA on the structure and function of the Golgi complex was analyzed by several approaches including the use of selective pharmacological blockers of the reaction and the use of ADP-ribosylated cytosol and/or enriched preparations of the BFA-induced ADP-ribosylation substrates, GAPDH and BARS-50.

A series of blockers of the BFA-dependent ADP-ribosylation reaction identified in our laboratory inhibited the effects of BFA on Golgi morphology and, with similar potency, the ADP-ribosylation of BARS-50 and GAPDH. In permeabilized RBL cells, the BFA-dependent disassembly of the Golgi complex required NAD+ and cytosol. Cytosol that had been previously ADP-ribosylated (namely, it contained ADP-ribosylated GAPDH and BARS-50), was instead sufficient to sustain the Golgi disassembly induced by BFA.

Taken together, these results indicate that an ADP-ribosylation reaction is part of the mechanism of action of BFA and it might intervene in the control of the structure and function of the Golgi complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD: Rapid redistribution of Golgi proteins into the ER in cells treated with Brefeldin A: Evidence for membrane cycling from Golgi to ER. Cell 56: 801–813, 1989

    PubMed  Google Scholar 

  2. Klausner RD, Donaldson JG, Lippincott-Schwartz J: Brefeldin A: Insights into the control of membrane traffic and organelle structure. J Cell Biol 116: 1071–1080, 1992

    Google Scholar 

  3. De Matteis MA, Di Girolamo M, Colanzi A, Pallas M, Di Tullio G, McDonald W, Moss J, Santini G, Bannykh S, Corda D, Luini A: Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci USA 91: 1114–1118, 1994

    PubMed  Google Scholar 

  4. Colanzi A, Di Girolamo M, Santini G, Sciulli G, Santarone S, Pallas M, Di Tullio G, Bannykh S, Corda D, De Matteis MA, Luini A: Brefeldin A, an inhibitor of vesicular traffic, stimulates the ADPribosylation of two cytosolic proteins. In: D. Corda, H. Hamm and A. Luini (eds). GTPase-Controlled Molecular Machines. Ares-Serono Symposia Publications, Rome, 1994, pp. 197–217

    Google Scholar 

  5. Di Girolamo M, Silletta MG, De Matteis MA, Braca A, Colanzi A, Pawlak D, Rasenick MM, Luini A, Corda D: Evidence that the 50–kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein βγsubunit complex. Proc Natl Acad Sci USA 92: 7065–7069, 1995

    PubMed  Google Scholar 

  6. Silletta MG, Di Girolamo M, Fiucci G, Weigert R, Mironov A, De Matteis MA, Luini A, Corda D: Possible role of BARS-50, a substrate of brefeldin A-dependent mono-ADP-ribosylation, in intracellular transport. Adv Exp Med Biol 419: 321–330, 1997

    PubMed  Google Scholar 

  7. Weigert R, Colanzi A, Mironov A, Buccione R, Cericola C, Sciulli MG, Santini G, Flati S, Fusella A, Donaldson J, Di Girolamo M, Corda D, De Matteis MA, Luini A: Characterization and development of chemical inhibitors of the brefeldin A-induced mono-ADP-ribosylation. J Biol Chem 272: 14200–14207, 1997

    PubMed  Google Scholar 

  8. Mironov A, Colanzi A, Silletta MG, Fiucci G, Flati S, Fusella A, Polishchuk R, Mironov A Jr, Di Tullio G, Weigert R, Malhotra V, Corda D, De Matteis MA, Luini A: Role of NAD+ and ADP-Ribosylation in the maintenance of the Golgi structure. J Cell Biol 139: 1109–1118, 1997

    PubMed  Google Scholar 

  9. Malhotra V, Serafini T, Orci L, Shepherd JC, Rothman JE: Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58: 329–336, 1989

    PubMed  Google Scholar 

  10. Bergmann JE: Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Meth Cell Biol 32: 85–110, 1989

    Google Scholar 

  11. Weigert R, Colanzi A, Limina C, Cericola C, Di Tullio G, Mironov A, Santini G, Sciulli G, Corda D, De Matteis MA, Luini A: Characterization of the endogenous mono-ADP-ribosylation stimulated by brefeldin A. Adv Exp Med Biol 419: 337–342, 1997

    PubMed  Google Scholar 

  12. Colanzi A, Mironov A, Weigert R, Limina C, Flati S, Cericola C, Di Tullio G, Di Girolamo M, Corda D, De Matteis MA, Luini A: Brefeldin A-induced ADP-ribosylation in the structure and function of the Golgi complex. Adv Exp Med Biol 419: 331–335, 1997

    PubMed  Google Scholar 

  13. Moss J, Vaughan M: ADP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins. Adv Enzymol 61: 303–379, 1988

    PubMed  Google Scholar 

  14. Sestili P, Spadoni G, Balsamini C, Scovassi I, Cattabeni F, Duranti E, Cantoni O, Higgins D, Thomson C: Structural requirements for inhibitors of poly(ADP-ribose) polymerase. J Cancer Res Clin Oncol 116: 615–622, 1990

    PubMed  Google Scholar 

  15. Okazaki IJ, Moss J: Common structure of the catalytic sites of mammalian and bacterial toxin ADP-ribosyltransferases. Mol Cell Biochem 138: 177–181, 1994

    PubMed  Google Scholar 

  16. Ma Q, Cui K, Xiao F, Lu AYH, Yang CS: Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarolbinding site in rat liver NAD(P)H: Quinone oxidoreductase by site-directed mutagenesis. J Biol Chem 267: 22298–22304, 1992

    PubMed  Google Scholar 

  17. Takizawa PA, Yucel JK, Veit B, Faulkner DJ, Deerinck T, Soto G, Ellisman M, Malhotra V: Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, Ilimaquinone. Cell 73: 1079–1090, 1993

    PubMed  Google Scholar 

  18. Mironov AA, Polishchuk RS, Colanzi A, Santone I, Mironov AA Jr, Fusella A, Lupetti P, Silletta MG, Weigert R, Dallai R, Malhotra V, Corda D, De Matteis MA, Luini A: Agents selectively fragmenting the Golgi tubular structure. J Cell Biol (submitted).

  19. Veit B, Yucel JK, Malhotra V: Microtubule independent vesiculation of Golgi membranes and the reassembly of vesicles into Golgi stacks. J Cell Biol 122: 1197–1206, 1993

    PubMed  Google Scholar 

  20. Doms RW, Russ G, Yewdell JW: Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J Cell Biol 109: 61–72, 1989

    PubMed  Google Scholar 

  21. Bhakdi S, Weller I, Walev E, Martin D, Palmer JM: A guide to the use of poreforming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol 182: 167–175, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiseppina Silletta, M., Colanzi, A., Weigert, R. et al. Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. Mol Cell Biochem 193, 43–51 (1999). https://doi.org/10.1023/A:1006943606805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006943606805

Navigation