Skip to main content
Log in

Adenovirus mediated - gene transfer into cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To circumvent limitations imposed by conventional gene transfer techniques into cardiac muscle cells, we studied whether replication defective adenovirus would obviate this limitation to basic studies of signal transduction and transcriptional control processes in the heart. We demonstrate here the utility of adenovirus mediated gene transfer to introduce foreign DNA into post-mitotic terminally differentiated ventricular myocytes with uniformity and high efficiency. We also provide evidence for the genetic modification of neonatal ventricular myocytes by adenovirus early region 1 (E1) proteins and their impact on cardiac gene transcription and DNA synthesis respectively. Thus, for studies of transcriptional control processes in the heart, which until now have been restricted to neonatal ventricular myocytes; adenovirus mediated gene transfer provides a means to genetically manipulate adult cardiac muscle cells. The advent of adenovirus gene transfer will extend our understanding of the molecular mechanisms that mediate basic cardiac disease and may ultimately provide a means to therapeutically mitigate the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afzal N, Dhalla NS: Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 262: H868–874, 1992

    Google Scholar 

  2. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K: Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85: 305–309, 1990

    Google Scholar 

  3. Levitsky D, de la Bastie D, Schwartz K, Lompre AM: Ca2+-ATPase and function of sarcoplasmic reticulum during cardiac hypertrophy. Am J Physiol 261: 23–26, 1991

    Google Scholar 

  4. Lompre AM, Lambert F, Lakatta EG, Schwartz K: Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 69: 1380–1388, 1991

    Google Scholar 

  5. Boheler KR, Carrier L, Chassagne C, de la Bastie D, Mercadier JJ, Schwartz K: Regulation of myosin heavy chain and actin isogenes expression during cardiac growth. Mol Cell Biochem 104: 101–107, 1991

    Google Scholar 

  6. Sanbe A, Tanonaka K, Hanaoka Y, Katoh T, Takeo S: Regional energy metabolism of failing hearts following myocardial infarction. J Mol Cell Cardiol 25: 995–1013, 1993

    Google Scholar 

  7. Boheler KR, Carrier L, de la Bastie D, Allen PD, Komajda M, Mercadier JJ, Schwartz K: Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J Clin Invest 88: 323–330, 1991

    Google Scholar 

  8. Schwartz K, Carrier L, Lompre AM, Mercadier JJ, Boheler KR: Contractile proteins and sarcoplasmic reticulum calcium-ATPase gene expression in the hypertrophied and failing heart. Basic Res Cardiol 87 Suppl 1: 285–290, 1992

    Google Scholar 

  9. Schwartz K, Boheler KR, de la Bastie D, Lompre AM, Mercadier JJ: Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Physiol 262: R364–369, 1992

    Google Scholar 

  10. Parker TG, Chow KL, Schwartz RJ, Schneider MD: Differential regulation of skeletal alpha-actin transcription in cardiac muscle by two fibroblast growth factors. Proc Natl Acad Sci USA 87: 7066–7070, 1990

    Google Scholar 

  11. Tsika RW, Bahl JJ, Leinwand LA, Morkin E: Thyroid hormone regulates expression of a transfected human alpha-myosin heavy-chain fusion gene in fetal rat heart cells. Proc Natl Acad Sci USA 87: 379–383, 1990

    Google Scholar 

  12. Navankasattusas S, Zhu H, Garcia AV, Evans SM, Chien KR: A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression. Mol Cell Biol 12: 1469–1479, 1992

    Google Scholar 

  13. Abdellatif M, MacLellan WR, Schneider MD: p21 Ras as a governor of global gene expression. J Biol Chem 269: 15423–15426, 1994

    Google Scholar 

  14. Kirshenbaum LA, Schneider MD: Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein-and p300-binding domains. J Biol Chem 270: 7791–7794, 1995

    Google Scholar 

  15. Thompson WR, Nadal Ginard B, Mahdavi V: A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. J Biol Chem 266: 22678–22688, 1991

    Google Scholar 

  16. Parker TG, Chow KL, Schwartz RJ, Schneider MD: Positive and negative control of the skeletal alpha-actin promoter in cardiac muscle. A proximal serum response element is sufficient for induction by basic fibroblast growth factor (FGF) but not for inhibition by acidic FGF. J Biol Chem 267: 3343–3350, 1992

    Google Scholar 

  17. Schneider MD, Parker TG: Cardiac growth factors. Prog Growth Factor Res 3: 1–26, 1991

    Google Scholar 

  18. Nadal-Ginard B, Mahdavi, V: Molecular basis of cardaic performance: plasticity of the myocardium generated through protein isoform switches. J Clin Invest 84: 1693–1700, 1989

    Google Scholar 

  19. Buttrick PM, Kaplan ML, Kitsis RN, Leinwand LA: Distinct behavior of cardiac myosin heavy chain gene constructs in vivo. Discordance with in vitroresults. Circ Res 72: 1211–1217, 1993

    Google Scholar 

  20. Buttrick PM, Kass A, Kitsis RN, Kaplan ML, Leinwand LA: Behavior of genes directly injected into the rat heart in vivo. Circ Res 70: 193–198, 1992

    Google Scholar 

  21. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM: Expression of recombinant genes in myocardium in vivoafter direct injection of DNA. Circulation 82: 2217–2221, 1990

    Google Scholar 

  22. Williams R, Johnston S: Gene Transfer into terminally differentiated myocytes. Circulation (abstract) 80: 602 1989

    Google Scholar 

  23. Bett AJ, Haddara W, Prevec L, Graham FL: An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA 91: 8802–8806, 1994

    Google Scholar 

  24. Brody SL, Jaffe HA, Han SK, Wersto RP, Crystal RG: Direct in vivogene transfer and expression in malignant cells using adenovirus vectors. Hum Gene Ther 5: 437–447, 1994

    Google Scholar 

  25. Jomary C, Piper TA, Dickson G, Couture LA, Smith AK, Neal MJ, Jones SE: Adenovirus-mediated gene transfer to murine retinal cells in vitroand in vivo. FEBS Lett 347: 117–122, 1994

    Google Scholar 

  26. Ridoux V, Robert JJ, Zhang X, Perricaudet M, Mallet J, Le Gal La Salle G: The use of adenovirus vectors for intracerebral grafting of transfected nervous cells. Neuroreport 5: 801–804, 1994

    Google Scholar 

  27. Engelhardt JF, Simon RH, Yang Y, Zepeda M, Weber Pendleton S, Doranz B, Grossman M, Wilson JM: Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: biological efficacy study. Hum Gene Ther 4: 759–769, 1993

    Google Scholar 

  28. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T: Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73: 1202–1207, 1993

    Google Scholar 

  29. Herz J, Gerard RD: Adenovirus-mediated transfer of low density li poprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 90: 2812–2816, 1993

    Google Scholar 

  30. Kirshenbaum LA, MacLellan WR, Mazur W, French BA, Schneider MD: Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest 92: 381–387, 1993

    Google Scholar 

  31. Lee SW, Trapnell BC, Rade JJ, Virmani R, Dichek DA: In vivoadenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res 73: 797–807, 1993

    Google Scholar 

  32. Kass Eisler A, Falck Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, Cipriani L, Leinwand LA: Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitroand in vivo. Proc Natl Acad Sci USA 90: 11498–11502, 1993

    Google Scholar 

  33. Steg PG, Feldman LJ, Scoazec JY, Tahlil O, Barry JJ, Boulechfar S, Ragot T, Isner JM, Perricaudet M: Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circulation 90: 1648–1656, 1994

    Google Scholar 

  34. Sakamoto H, Ochiya T, Sato Y, Tsukamoto M, Konishi H, Saito I, Sugimura T, Terada M: Adenovirus-mediated transfer of the MST-1 (FGF4) gene induces increased levels of platelet count in vivo. Proc Natl Acad Sci USA 91: 12368–12372, 1994

    Google Scholar 

  35. Rosenfeld MA, Ronald G, Crystal RG: Gene therapy for pulmonary diseases. Pathol Biol Paris 41: 677–680, 1993

    Google Scholar 

  36. Chen SH, Shine HD, Goodman JC, Grossman RG, Woo SL: Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA 91: 3054–3057, 1994

    Google Scholar 

  37. Simon RH, Engelhardt JF, Yang Y, Zepeda M, Weber Pendleton S, Grossman M, Wilson JM: Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: toxicity study. Hum Gene Ther 4: 771–780, 1993

    Google Scholar 

  38. Gomez Foix AM, Coats WS, Baque S, Alam T, Gerard RD, Newgard CB: Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism. J Biol Chem 267: 25129–25134, 1992

    Google Scholar 

  39. Lemarchand P, Jones M, Danel C, Yamada I, Mastrangeli A, Crystal RG: In vivoadenovirus-mediated gene transfer to lungs via pulmonary artery. J Appl Physiol 76: 2840–2845, 1994

    Google Scholar 

  40. Acsadi G, Jani A, Massie B, Simoneau M, Holland P, Blaschuk K, Karpati G: A differential efficiency of adenovirus-mediated in vivogene transfer into skeletal muscle cells of different maturity. Hum Mol Genet 3: 579–584, 1994

    Google Scholar 

  41. Chen SJ, Wilson JM, Muller DW: Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation 89: 1922–1928, 1994

    Google Scholar 

  42. McLachlin JR, Cornetta K, Eglitis MA, Anderson WF: Retroviral-mediated gene transfer. Prog Nucleic Acid Res Mol Biol 38: 91–135, 1990

    Google Scholar 

  43. Eglitis M, Anderson W: Retroviral vectors for introduction of genes into mammalian cells. Biotechniques 6: 608–614, 1988

    Google Scholar 

  44. McLachlin JR, Eglitis MA, Ueda K, Kantoff PW, Pastan IH, Anderson WF, Gottesman MM: Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer [see comments]. J Natl Cancer Inst 82: 1260–1263, 1990

    Google Scholar 

  45. Nabel EG, Nabel GJ: Complex models for the study of gene function in cardiovascular biology. Annu Rev Physiol 56: 741–761, 1994

    Google Scholar 

  46. Mitani K, Graham FL, Caskey CT, Kochanek S: Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci USA 92: 3854–3858, 1995

    Google Scholar 

  47. Graham F, Prevec L: Manipulation of adenovirus vectors. Gene Transfer and Expression Protocols. E Murray (Ed). 1991, p 109

  48. Nevins JR: Cell cycle targets of the DNA tumor viruses. Curr Opin Genet Dev 4: 130–134, 1994

    Google Scholar 

  49. Nevins JR: Adenovirus ElA-dependent trans-activation of transcription. Semin Cancer Biol 1: 59–68, 1990

    Google Scholar 

  50. Whyte P, Williamson NM, Harlow E: Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75, 1989

    Google Scholar 

  51. Kirshenbaum LA, Angelides KJ, Schneider MD: Images in cardiovascular medicine. Detection of exogenous gene expression in live adult ventricular myocytes after adenoviral gene delivery. Circulation 90: 2124–2125, 1994

    Google Scholar 

  52. Kirshenbaum LA, Thomas TP, Randhawa AK, Singal PK: Time-course of cardiac myocyte injury due to oxidative stress. Mol Cell Biochem 111: 25–31, 1992

    Google Scholar 

  53. Parker TG, Packer SE, Schneider MD: Peptide growth factors can provoke ‘fetal’ contractile protein gene expression in rat cardiac myocytes. J Clin Invest 85: 507–514, 1990

    Google Scholar 

  54. Moran E, Zerler B, Harrison TM, Mathews MB: Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 6: 3470–3480, 1986

    Google Scholar 

  55. Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B: Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol 57: 765–775, 1986

    Google Scholar 

  56. Moran E: A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334: 168–170, 1988

    Google Scholar 

  57. White E, Sabbatini P, Debbas M, Wold WS, Kusher DI, Gooding LR: The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol 12: 2570–2580, 1992

    Google Scholar 

  58. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E: The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins [published erratum appears in Proc Natl Acad Sci USA 1992 Oct 15; 89 (20): 9974]. Proc Natl Acad Sci USA 89: 7742–7746, 1992

    Google Scholar 

  59. Kraus VB, Moran E, Nevins JR: Promoter-specific trans-activation by the adenovirus E1A12S product offolves separate E1A domains. Mol Cell Biol 12: 4391–4399, 1992

    Google Scholar 

  60. Wang HG, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E: Identification of specific adenovirus E I A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476–488, 1993

    Google Scholar 

  61. Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal Ginard B: Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309–324, 1993

    Google Scholar 

  62. Schneider JW, Gu W, Zhu L, Mahdavi V, Nadal Ginard B: Reversal of terminal differentiation mediated by p107 in Rb-/-muscle cells. Science 264: 1467–1471, 1994

    Google Scholar 

  63. Moran E: Interaction of adenoviral proteins with pRB and p53. FASEB J 7: 880–885, 1993

    Google Scholar 

  64. Kim KK, Soonpaa MH, Daud AI, Koh GY, Kim JS, Field LJ: Tumor suppressor gene expression during normal and pathologic myocardial growth. J Biol Chem 269: 22607–22613, 1994

    Google Scholar 

  65. Daud AI, Lanson NA, Jr., Claycomb WC, Field LJ: Identification of SV40 large T-antigen-associated proteins in cardiomyocytes from transgenic mice. Am J Physiol 264: H1693–1700, 1993

    Google Scholar 

  66. Steinhelper ME, Lanson NA, Jr., Dresdner KP, Delcarpio JB, Wit AL, Claycomb WC, Field LJ: Proliferation in vivoand in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Physiol 259: H1826–1834, 1990

    Google Scholar 

  67. Field LJ: Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardaic arrythmias in mice. Science 239: 1029–1033, 1988

    Google Scholar 

  68. Ueno H, Perryman MB, Roberts R, Schneider MD: Differentiation of cardiac myocytes after mitogen withdrawal exhibits three sequential states of the ventricular growth response. J Cell Biol 107: 1911–1918, 1988

    Google Scholar 

  69. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM: Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884, 1994

    Google Scholar 

  70. Sen A, Dunnmon P, Henderson SA, Gerard RD, Chien KR: Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J Biol Chem 263: 19132–19136, 1988

    Google Scholar 

  71. Kirshenbaum LA, Singal PK: Increase in endogenous antioxidant enzymes protects hearts against reperfusion injury. Am J Physiol 265: H484–493, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirshenbaum, L.A. Adenovirus mediated - gene transfer into cardiomyocytes. Mol Cell Biochem 172, 13–21 (1997). https://doi.org/10.1023/A:1006853824044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006853824044

Navigation