Skip to main content
Log in

Role of Ca2+-calmodulin dependent phospholamban phosphorylation on the relaxant effect of β-adrenergic agonists

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The role of the Ca2+-calmodulin dependent pathway of phospholamban phosphorylation on the relaxant effect of β-adrenergic agonists was studied in isolated perfused rat heart. Administration of the calmodulin antagonist W7 or lowering [Ca]0 from 1.35 mM (control) to 0.25 mM, were used as experimental tools to inhibit the Ca2+-calmodulin dependent protein kinase activity. 3×10−8 M isoproterenol increased cAMP levels from 0.613±0.109 pmol/mg wet weight to 1.581±0.123, phospholamban phosphorylation from 36±6 pmol32P/mg protein to 277±26 and decreased time to half relaxation (t1/2) from 61±2 msec to 39±2. Simultaneous perfusion of isoproterenol with 10−6 M W7, decreased phospholamban phosphorylation to 170±23 and prolongated t1/2 to 47±3 but did not affect the increase either in cAMP levels or myocardial contractility produced by isoproterenol. Similar effects on phospholamban phosphorylation and myocardial relaxation were obtained when isoproterenol was perfused in low [Ca]0. Low [Ca]0 did not affect the increase in cAMP elicited by isoproterenol but offset the positive inotropic effect of the β-agonist.

The results suggest a physiological role of the Ca2+-calmodulin dependent phospholamban phosphorylation pathway as a mechanism that supports, in part, the β-adrenergic cardiac relaxant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz AM: Excitation-contraction coupling. In: AM Katz (ed.) Physiology of the heart. Raven Press, New York, 1977, pp 137–159

    Google Scholar 

  2. Tada M, Yamada M, Kadoma M, Inui M, Ohmori F: Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban. Mol Cell Biochem 46: 73–95, 1982

    PubMed  Google Scholar 

  3. Kirchberger MA, Tada M, Katz AM: Adenosine 3′∶5′-monophosphate-dependent protein kinase catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac reticulum. J Biol Chem 249: 6166–6173, 1974

    PubMed  Google Scholar 

  4. Katz AM, Tada M, Kirchberger MA: Control of calcium transport in the myocardium by the cyclic AMP-protein kinase system. In: G Drummond (ed.) Advances in Cyclic Nucleotide Research. Raven Press, New York, 1975, pp 453–471

    Google Scholar 

  5. Le Peuch CJ, Haiech J, Demaille JG: Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylations. Biochemistry 18: 5150–5157, 1979

    PubMed  Google Scholar 

  6. Bilezikjian LM, Kranias EG, Potter JD, Schwartz A: Studies on phosphorylation of canine cardiac sarcoplasmic reticulum by calmodulin-dependent protein kinase. Circ Res 49: 1356–1362, 1981

    PubMed  Google Scholar 

  7. Tada M, Kirchberger MA, Repke DI, Katz AM: The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 249: 6174–6180, 1974

    PubMed  Google Scholar 

  8. Katz S, Remtulla MA: Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem Biophys Res Commun 83: 1373–1379, 1978

    PubMed  Google Scholar 

  9. Kirchberger MA, Antonetz T: Calmodulin-mediated regulation of calcium transport and (Ca2++Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem 257: 5685–5691, 1982

    PubMed  Google Scholar 

  10. Simmerman HKB, Collins JH, Theibert JL, Wegener AD, Jones LR: Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261: 13333–13341, 1986

    PubMed  Google Scholar 

  11. Vittone L, Mundiña C, Chiappe de Cingolani G, Mattiazzi A: Correlationship between myocardial relaxation and phospholamban phosphorylation. Acta Physiol Pharmacol Latinoam 38: 213–227, 1988

    PubMed  Google Scholar 

  12. Grassi de Gende AO, Pérez Alzueta AD, Cingolani HE: Effect of isoproterenol on relation between maximal rate of contraction and maximal rate of relaxation. Am J Physiol 233: H404-H409, 1977

    PubMed  Google Scholar 

  13. Vittone L, Grassi A, Chiappe L, Argel M, Cingolani HE: Relaxing effect of pharmacologic interventions increasing cAMP in rat heart. Am J Physiol 240: H441-H447, 1981

    PubMed  Google Scholar 

  14. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM: β-adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258: 464–471, 1983

    PubMed  Google Scholar 

  15. Lindemann JP, Watanabe AM: Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. J Biol Chem 260: 4516–4525, 1985

    PubMed  Google Scholar 

  16. Mundiña de Weilenmann C, Vittone L, de Cingolani G, Mattiazzi A: Dissociation between contraction and relaxation: The possible role of phospholamban phosphorylation. Basic Res Cardiol 82: 507–516, 1987

    PubMed  Google Scholar 

  17. Vittone L, Mundiña C, Chiappe de Cingolani G, Mattiazzi A: cAMP and calcium-dependent mechanisms of phospholamban phosphorylation in intact hearts. Am J Physiol 258: H318-H325, 1990

    PubMed  Google Scholar 

  18. Napolitano R, Vittone L, Mundiña C, Chiappe de Cingolani G, Mattiazzi A: Decrease in tetanic tension elicited by beta-adrenergic stimulation. Arch Int Physiol Biochim Biophys 99: 303–307, 1991

    PubMed  Google Scholar 

  19. Wegener AD, Simmerman HKB, Lindemann JP, Jones LR: Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to β-adrenergic stimulation. J Biol Chem 264: 11468–11474, 1989

    PubMed  Google Scholar 

  20. Parmley W, Sonnenblick F: Relation between mechanisms of contraction and relaxation in mammalian cardiac muscle. Am J Physiol 216: 1084–1091, 1969

    PubMed  Google Scholar 

  21. Mattiazzi A, Garay A, Cingolani HE: Critical evaluation of isometric indexes of relaxation in rat and cat papillary muscles and toad ventricular strips. J Mol Cell Cardiol 18: 749–758, 1986

    PubMed  Google Scholar 

  22. Bradford MM: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analyt Biochem 72: 248–254, 1976

    PubMed  Google Scholar 

  23. Solomon Y, Londos C, Rodbell M: A highly sensitive adenylate cyclase assay. Anal Biochem 58: 541–548, 1974

    PubMed  Google Scholar 

  24. Lamers JMJ, Stinis JT: Phosphorylation of low molecular weight proteins in purified preparations of rat heart sarcolemma and sarcoplasmic reticulum. Biochim Biophys Acta 624: 443–459 1980

    PubMed  Google Scholar 

  25. Lamers JMJ, Heyliger CE, Panaglia V, Dhalla NS: Properties of 5′-nucleotidase in rat heart sarcolemma. Biochim Biophys Acta 742: 568–575, 1983

    PubMed  Google Scholar 

  26. Louis CF, Hogan M, Turnquist J: Properties of the 23,000-Da phosphoproteins in cardiac sarcolemma and sarcoplasmic reticulum. Arch Biochem Biophys 246: 98–107, 1986

    PubMed  Google Scholar 

  27. Laemmli UK: Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (Lond) 227: 680–685 1970

    Google Scholar 

  28. Prozio MA, Pearson AM: Improved resolution of myofibrillar proteins with sodium-dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim Biophys Acta 490: 27–34, 1977

    PubMed  Google Scholar 

  29. Louis CF, Maffit M, Jarvis B: Factors that modify the molecular size of phospholamban, the 23,000 dalton cardiac sarcoplasmic reticulum phosphoprotein. J Biol Chem 257: 15182–15186, 1982

    PubMed  Google Scholar 

  30. Barron JT, Bárány M, Bárány K: Phosphorylation of the 20,000-dalton light chain of myosin of intact arterial smooth muscle at rest and in contraction. J Biol Chem 254: 4954–4956, 1979

    PubMed  Google Scholar 

  31. Steiner AL, Parker CW, Kipnis DM: Radioimmunoassay for cyclic nucleotides. I. Preparations of antibodies and iodinated cyclic nucleotides. J Biol Chem 247: 1106–1113, 1972

    PubMed  Google Scholar 

  32. Harper JF: Peritz' F test: basic program of a robust multiple comparison test for statistical analysis of all differences among group means. Comput Biol Med 14: 437–445, 1984

    PubMed  Google Scholar 

  33. Le Peuch CJ, Guilleux JC, Demaille JG: Phospholamban phosphorylation in the perfused rat heart is not solely dependent on β-adrenergic stimulation. FEBS Lett 114: 165–168, 1980

    PubMed  Google Scholar 

  34. Asano M, Suzuki Y, Hidaka H: Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther 220: 191–196, 1981

    Google Scholar 

  35. Asano M: Divergent pharmacological effects of three calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7), chlorpromazine and calmidazolium, on isometric tension development and myosin light chain phosphorylation in intact bovine tracheal smooth muscle. J Pharmacol Exp Ther 251: 764–773, 1989

    PubMed  Google Scholar 

  36. Wermelskirchen D, Koch P, Wilhelm D, Nebel U, Leidig A, Wilffert B, Peters T: Effects of calmodulin antagonists on contraction and45Ca movements in rat aorta. Pharmacology 39: 317–326, 1989

    PubMed  Google Scholar 

  37. Chan KM, Delfert DM, Koepnic SL, Mc Donald JM: Effect of W7 on Ca2+ uptake and Ca2+-ATPase activities of the endoplasmic reticulum of rat liver. Arch Biochem Biophys 256: 472–479, 1987

    PubMed  Google Scholar 

  38. Zimmer M, Hofmann F: Calmodulin antagonists inhibit activity of myosin light-chain kinase independent of calmodulin. Eur J Biochem 142: 393–397, 1984

    PubMed  Google Scholar 

  39. Hidaka HT, Yamaki T, Naka M, Tanaka T, Hayashi H, Kobayashi R: Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol 17: 66–72, 1980

    PubMed  Google Scholar 

  40. Hill TD, Campos-Gonzalez R, Kindmark H, Boynton AL: Inhibition of inositol triphosphate-stimulated calcium mobilization by calmodulin antagonists in rat liver epithelial cells. J Biol Chem 263: 16479–16484, 1988

    PubMed  Google Scholar 

  41. Macdougall LK, Jones LR, Cohen P: Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur J Biochem 196: 725–734, 1991

    PubMed  Google Scholar 

  42. Cohen P, Cohen PTW: Protein phosphatases come to age. J Biol Chem 264: 21435–21438, 1989

    PubMed  Google Scholar 

  43. Neumann J, Gupta RC, Schmitz W, Scholz H, Nairn AC, Watanabe AM: Evidence for isoproterenol-induced phosphorylation of phosphatase inhibitor-1 in the intact heart. Circ Res 69: 1450–1457, 1991

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vittone, L., Mundiña, C., Chiappe de Cingolani, G. et al. Role of Ca2+-calmodulin dependent phospholamban phosphorylation on the relaxant effect of β-adrenergic agonists. Mol Cell Biochem 124, 33–42 (1993). https://doi.org/10.1007/BF01096379

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01096379

Key words

Navigation