Skip to main content
Log in

A review of the molecular structure of tetanus toxin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

A discontinuous preparative polyacrylamide gel electrophoresis system has been developed and used to purify both the nicked and unnicked forms of tetanus toxin. The system was also used to prepare purified H and L chain peptides from the nicked toxin. The results show that the endogenous protease(s), which convert unnicked toxin to the nicked form, produce multiple species of nicked toxin, and heterogeneity in the H and L chains. The major amino termini of the toxins and their peptide components are: extract toxin, proline; filtrate toxin, proline, serine and asparagine; L chain, proline; and H chain, serine and asparagine. The L chain is located in the amino terminal position of the toxin molecule and the H chain the carboxy terminal end. A model is proposed to explain these results. Using the analytical ultracentrifuge, we have determined the molecular weights of extract and filtrate toxins to be 140 000 ± 5 000 and 128 000 ± 3 000, respectively. Using S DS-polyacrylamide gel electrophoresis we estimate the molecular weights of the H and L chains to be 87 000 and 48 000 daltons, respectively.

Circular dichroic spectra of the toxins and their peptide components indicate that: the major tryptophanyl band in the toxin is contributed almost entirely by the H chain, the microenvironments of all the aromatics and disulfides in the two toxins appear to have small if any differences, the two toxins show little difference in their ordered secondary structure, and the two peptides when separated from one another still retain 80% of the helical structure that is present in the intact toxin but show a considerable loss of β-structure.

The crystalline form of the nicked toxin has a hexagonal symmetry with two dimensional reciprocal lattice constants of 1/150 Å−1 and 1/150 Å−1. The crystals appear to belong to the two dimensional plane group P6 suggesting that each unit cell contains 6 or a multiple of 6 toxin molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bizzini, B., 1979. Microbiol. Rev. 43: 224–240.

    PubMed  CAS  Google Scholar 

  2. Habermann, E., 1978. In: Handbook of Clinical Neurology, pp. 491–547 (Vinken, P. J. & Bruyn, G. W., eds.), North Holland, Amsterdam.

    Google Scholar 

  3. van Heyningen, S., 1981. Pharmacol. Ther. 11: 141–157.

    Article  Google Scholar 

  4. Mellanby, J. & Green, J., 1981. Neuroscience 6: 281–300.

    Article  PubMed  CAS  Google Scholar 

  5. Craven, C. J. & Dawson, J. J., 1973. Biochem. Biophys. Acta 317, 277–285.

    CAS  Google Scholar 

  6. Bizzini, B., Turpin, A. & Raynaud, M., 1973. NaunynSchmiedeberg's Arch. Pharmacol. 276: 271–288.

    Article  CAS  Google Scholar 

  7. Matsuda, M. & Yoneda, M., 1975. Infection and Immunity 12:1141–1153.

    Google Scholar 

  8. Helting, T. B. & Zwisler, O., 1977. J. Biol. Chem. 252: 187–193.

    PubMed  CAS  Google Scholar 

  9. Helting, T. B., Parschat, S. & Engelhardt, H., 1979. J. Biol. Chem. 254: 10728–10733.

    PubMed  CAS  Google Scholar 

  10. Murphy, S. G., Plummer, T. H. & Miller, K. D., 1968. Fed. Proc. 27: 268.

    Google Scholar 

  11. Bizzini, B., Blass, J., Turpin, A. & Raynaud, M., 1970. Europ. J. Biochem. 17: 100–105.

    Article  PubMed  CAS  Google Scholar 

  12. Robinson, J. P., Pickelsimer, J. B. & Puett, D., 1975. J. Biol. Chem. 250: 7435–7442.

    PubMed  CAS  Google Scholar 

  13. Matsuda, M. & Yoneda, M., 1979. Biochem. Biophys. Res. Common. 86: 635–642.

    Article  Google Scholar 

  14. van Heyningen, S., 1976. FEBS Letters 68: 5–7.

    Article  PubMed  Google Scholar 

  15. Bizzini, B., Stoeckel, K. & Schwab, M., 1977. J. Neurochem. 28:529–542.

    Article  PubMed  CAS  Google Scholar 

  16. Matsuda, M. & Yoneda, M., 1974. Biochem. Biophys. Res. Common. 57: 1257–1262.

    Article  CAS  Google Scholar 

  17. DiMari, S. J., Cumming, M. A., Hash, J. H. & Robinson, J. P., 1982. Arch. Biochem. Biophys. 214: 342–353.

    Article  PubMed  CAS  Google Scholar 

  18. Murphy, S. G. & Miller, K. D., 1967. J. Bacteriol. 94: 580–585.

    PubMed  CAS  Google Scholar 

  19. Holmes, M. J., 1969. Doctoral Dissertation, University of Nebraska, Lincoln, Nebraska.

    Google Scholar 

  20. Kimer, J., Wronska, J. & Iskievo, J., 1976. Med. Dosw. Mikrobiol. 28: 353–357.

    Google Scholar 

  21. Soru, E., Istrati, M., Poenaru, E. & Sternberg, M., 1958. Arch. Room. Pathol. Exper. 17: 283–288.

    CAS  Google Scholar 

  22. Neubauer, V. & Helting, T. B., 1979. Biochem. Biophys. Res. Comm. 86: 635–642.

    Article  PubMed  CAS  Google Scholar 

  23. Gray, W. R., 1967. Meth. Enzymol. 11: 139–151.

    CAS  Google Scholar 

  24. DiMari, S. J., Hash, J. H. & Robinson, J. P., 1982. Arch. Biochem. Biophys. 214: 354–365.

    Article  PubMed  CAS  Google Scholar 

  25. Chang, J. Y. & Creaser, E. H., 1976. Biochem. J. 157:77–85.

    PubMed  CAS  Google Scholar 

  26. Chang, J. Y. & Creaser, E. H., 1976. Biochem. J. 153: 607–611.

    PubMed  CAS  Google Scholar 

  27. DiMari, S. J., Robinson, J. P. & Hash, J. H., 1981. J. Chromatog. 213: 91–97.

    Article  CAS  Google Scholar 

  28. Matsuda, M. & Yoneda, M., 1977. Biochem. Biophys. Res. Commun. 77: 268–274.

    Article  PubMed  CAS  Google Scholar 

  29. Neubauer, V. & Helting, T., 1981. Biochem. Biophys. Acta. 668:141–148.

    PubMed  CAS  Google Scholar 

  30. Helting, T. B. & Zwisler, O., 1974. Biochem. Biophys. Res. Common. 57: 1263–1270.

    Article  CAS  Google Scholar 

  31. Robinson, J. P., Holladay, L. A., Hash, J. H. & Puett, D., 1982. J. Biol. Chem. 257: 407–411.

    PubMed  CAS  Google Scholar 

  32. Lamm, O., 1929. Arkiv. Mat. Astron. Fysik. 21B: No. 2.

  33. Robinson, J. P., Chen, H. C. J., Hash, J. H. & Puett, D., 1978. Mol. Cell Biochem. 21: 23–31.

    Article  PubMed  CAS  Google Scholar 

  34. Pillemer, L., Wittler, R. G. & Grossberg, D. B., 1946. Science 103: 615–616.

    Article  CAS  Google Scholar 

  35. Pillemer, L., Wittler, R. G., Burrell, J. I. & Grossberg, D. B., 1948. J. Exp. Med. 88: 205–221.

    Article  CAS  Google Scholar 

  36. Dunn, M. S., Camien, M. N. & Pillemer, L., 1949. Arch. Biochem. Biophys. 22: 374–376.

    CAS  Google Scholar 

  37. Sato, H., Ito, A., Yamakawa, Y. & Murata, R., 1979. Infection and Immunity 24: 958–961.

    PubMed  CAS  Google Scholar 

  38. Jakoby, W. B., 1968. Anal. Biochem. 26: 295–298.

    Article  PubMed  CAS  Google Scholar 

  39. Chiu, W., Rankert, D., Cumming, M. A. & Robinson, J. P., 1982. J. Ultrastruct. Res. In press.

  40. Yaphantis, D. A., 1964. Biochemistry 3: 297–317.

    Article  Google Scholar 

  41. Van Holde, K. E. & Baldwin, R. L. 1958. J. Phys. Chem. 62: 734–743.

    Article  Google Scholar 

  42. Robinson, J. P., Holladay, L. A., Picklesimer, J. B. & Puett, D., 1974. Molec. and Cell Biochem. 5: 147–151.

    Article  CAS  Google Scholar 

  43. Henderson, R. & Unwin, N., 1975. Nature 257: 28–32.

    Article  PubMed  CAS  Google Scholar 

  44. Chiu, W. & Jeng, T. W., 1980. In: Electron Microscopy at Molecular Dimensions. (W. Baumeister & W. Vogell, eds.) pp. 137–142. Springer Verlet, Heidelberg.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J.P., Hash, J.H. A review of the molecular structure of tetanus toxin. Mol Cell Biochem 48, 33–44 (1991). https://doi.org/10.1007/BF00214820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214820

Keywords

Navigation