Skip to main content
Log in

Inverse problems of aggregation processes

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The coagulation frequency is the key ingredient in the population balance (Smoluchowski) equation of coagulation kinetics. An inverse problem is formulated to extract the coagulation frequency from transient size distributions when these distributions are self-similar. Two numerical examples illustrate the procedure. The first demonstrates the inverse problem for the recovery of singular coagulation frequencies, while the second shows the procedure when self-similarity is approximate. Transient droplet coagulation experiments in a turbulent flow field have been performed. The resulting size distributions are observed to be self-similar. The inverse problem is used to determine the drop coagulation frequency. This frequency shows significant deviation from the coagulation frequencies derived from simple models of drop-drop interactions in a turbulent flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Smoluchowski,Physik. Z. 17:557 (1916).

    Google Scholar 

  2. S. K. Friedlander,Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (Wiley, New York, 1977).

    Google Scholar 

  3. M. H. Ernst, inFundamental Problems in Statistical Mechanics, Vol. 6, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1985).

    Google Scholar 

  4. J. Feder, T. Jossang, and E. Rosenqvist,Phys. Rev. Lett. 53:1403 (1984).

    Google Scholar 

  5. F. Family and D. P. Landau, inKinetics of Aggregation and Gelation, F. Family and D. P. Landau, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  6. F. Family and T. Vicsek, inPhysics of Finely Divided Matter, N. Boccara and M. Daoud, eds. (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  7. R. M. Ziff, M. H. Ernst, and E. M. Hendriks,J. Phys. A: Math. Gen. 16:2293 (1983).

    Google Scholar 

  8. D. L. Swift and S. K. Friedlander,J. Colloid Interface Sci. 19:621 (1964).

    Google Scholar 

  9. R. Muralidhar and D. Ramkrishna,J. Colloid Interface Sci. 112:348 (1986).

    Google Scholar 

  10. R. Muralidhar and D. Ramkrishna,J. Colloid Interface Sci. 131:503 (1989).

    Google Scholar 

  11. P. G. J. van Dongen and M. H. Ernst,J. Stat. Phys. 50:295 (1988).

    Google Scholar 

  12. C. S. Wang, Ph. D. Thesis, California Institute of Technology (1966).

  13. C. S. Wang and S. K. Friedlander,J. Colloid Interface Sci. 24:170 (1967).

    Google Scholar 

  14. L. M. Delves and J. L. Mohamed,Computational Methods for Integral Equations (Cambridge University Press, London, 1987).

    Google Scholar 

  15. D. Ramkrishna,Chem. Eng. Sci. 28:1362 (1973).

    Google Scholar 

  16. R. Courant and D. Hilbert,Methods of Mathematical Physics, Vol. 1 (Wiley, New York, 1962).

    Google Scholar 

  17. R. Muralidhar and D. Ramkrishna,Ind. Eng. Chem. Fund. 25:554 (1986).

    Google Scholar 

  18. T. G. Tobin, R. Muralidhar, H. Wright, and D. Ramkrishna,Chem. Eng. Sci. (in press).

  19. V. G. Levich,Physicochemical Hydrodynamics (Prentice-Hall, New York, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, H., Muralidhar, R., Tobin, T. et al. Inverse problems of aggregation processes. J Stat Phys 61, 843–863 (1990). https://doi.org/10.1007/BF01027303

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027303

Key words

Navigation