Skip to main content
Log in

Noise and superfluid turbulence in He II: Theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Noise may be used as a probe of the dynamics of a nonlinear system. Weak noise provides information on the local dynamics near a transition. This information can be helpful for identifying the underlying bifurcation. The normal form of the bifurcation can then be used as a starting point for a phenomenological model of the system. Such an approach furnishes a unified explanation of the experimental data near the transition between superfluid turbulent states TI and TII in liquid helium counterflow. Strong external noise probes global features of the nonlinearities of a system. It may also dramatically affect the dynamical behavior of the system and give rise to noise-induced transitions. The problems of modeling this phenomenon in the liquid helium counterflow system are discussed and a first model, providing a unified description of the experimental observations for weak and strong noise, is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Golubitsky and D. G. Schaeffer,Singularities and Groups in Bifurcation Theory (Springer, New York, 1985).

    Google Scholar 

  2. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983).

    Google Scholar 

  3. K. Wiesenfeld,J. Stat. Phys. 38:1071 (1985);Phys. Rev. A 32:1744 (1985).

    Google Scholar 

  4. M. F. Schumaker and W. Horsthemke,Phys. Rev. A 36:354 (1987).

    Google Scholar 

  5. C. P. Lorenson, D. Griswold, V. U. Nayak, and J. T. Tough,Phys. Rev. Lett. 55:1494 (1985).

    Google Scholar 

  6. D. Griswold, C. P. Lorenson, and J. T. Tough,Phys. Rev. B 35:3149 (1987).

    Google Scholar 

  7. D. Griswold and J. T. Tough,Phys. Rev. A 36:1360 (1987).

    Google Scholar 

  8. W. Horsthemke and M. Malek Mansour,Z. Phys. B 24:307 (1976).

    Google Scholar 

  9. W. Horsthemke and R. Lefever,Phys. Lett. A 64:19 (1977).

    Google Scholar 

  10. L. Arnold, W. Horsthemke, and R. Lefever,Z. Phys. B 29:367 (1978).

    Google Scholar 

  11. A. Schenzle and H. Brand,Phys. Rev. A 20:1628 (1979).

    Google Scholar 

  12. W. Horsthemke and R. Lefever,Noise-Induced Transitions (Springer, Berlin, 1984).

    Google Scholar 

  13. W. Horsthemke and R. Lefever,Biophys. J. 35:415 (1981).

    Google Scholar 

  14. K. W. Schwarz,Phys. Rev. B 18:245 (1978);Phys. Rev. Lett. 49:283 (1982).

    Google Scholar 

  15. W. F. Vinen, inProgress in Low Temperature Physics, Vol.3, C. J. Gorter, ed. (North-Holland, Amsterdam, 1961), p. 1.

    Google Scholar 

  16. R. K. Childers and J. T. Tough,Phys. Rev. B 13:1040 (1976).

    Google Scholar 

  17. M. F. Schumaker, Ph.D. Dissertation, University of Texas, Austin (1987); M. F. Schumaker and W. Horsthemke, in preparation.

    Google Scholar 

  18. D. L. Griswold, Ph.D. Dissertation, Ohio State University, Columbus (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horsthemke, W., Schumaker, M.F. Noise and superfluid turbulence in He II: Theory. J Stat Phys 54, 1175–1188 (1989). https://doi.org/10.1007/BF01044710

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044710

Key words

Navigation