Skip to main content
Log in

Boolean delay equations. II. Periodic and aperiodic solutions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Boolean delay equations (BDEs) areevolution equations for a vector of discrete variables x(t). The value of each componentX i (t), 0 or 1. depends on previous values of all componentsx j (t− t ij ), x i (t)=f i (x1(tt i1),...,x n (tt in )). BDEs model the evolution of biological and physical systems with threshold behavior and nonlinear feedbacks. The delays model distinct interaction times between pairs of variables. In this paper, BDEs are studied by algebraic, analytic, and numerical methods. It is shown that solutions depend continuously on the initial data and on the delays. BDEs are classified intoconservative anddissipative. All BDEs with rational delays only haveperiodic solutions only. But conservative BDEs with rationally unrelated delays haveaperiodic solutions of increasing complexity. These solutions can be approximated arbitrarily well by periodic solutions of increasing period.Self-similarity andintermittency of aperiodic solutions is studied as a function of delay values, and certain number-theoretic questions related toresonances and diophantine approximation are raised. Period length is shown to be a lower semicontinuous function of the delays for a given BDE, and can be evaluated explicitly for linear equations. We prove that a BDE isstructurable stable if and only if it has eventually periodic solutions of bounded period, and if the length of initial transients is bounded. It is shown that, for dissipative BDEs, asymptotic solution behavior is typically governed by areduced BDE. Applications toclimate dynamics and other problems are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Jacob and J. Monod,J. Molec. Biol. 3:318 (1961).

    Google Scholar 

  2. M. Sugita,J. Theor. Biol. 4:179 (1963).

    Google Scholar 

  3. S. A. Kauffman,J. Theor. Biol. 22:437 (1969).

    Google Scholar 

  4. J. von Neumann,Theory of Self-Reproducing Automata, edited and completed by A. W. Burks (University of Illinois, Urbana, 1966).

    Google Scholar 

  5. S. Ulam,Ann. Rev. Biophys. Bioeng. 1:277 (1972).

    Google Scholar 

  6. S. Wolfram,Rev. Mod. Phys. 55:583 (1983).

    Google Scholar 

  7. V. S. Černjavskii,Trudy Moskov. Mat. Obsč. 9:425 (1960); Engl. transl.Am. Math. Transl. (Series 2)39:207 (1964).

    Google Scholar 

  8. E. Fredkin and T. Toffoli,Int. J. Theor. Phys. 21:219 (1982).

    Google Scholar 

  9. R. Thomas,J. Theor. Biol. 42:563 (1973).

    Google Scholar 

  10. R. Thomas,J. Theor. Biol. 73:631 (1978).

    Google Scholar 

  11. C. Nicolis,Q. J. R. Meteorol. Soc. 108:707 (1982).

    Google Scholar 

  12. M. Ghil and J. Tavantzis,SIAM J. Appl. Math. 43:1019 (1983).

    Google Scholar 

  13. D. Dee and M. Ghil,SIAM J. Appl. Math. 44:111 (1984).

    Google Scholar 

  14. A. P. Mullhaupt,Boolean Delay Equations: A Class of Semidiscrete Dynamical Systems, Ph.D. thesis, New York University, New York (1984).

    Google Scholar 

  15. B. H. Arnold,Logic and Boolean Algebra (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  16. S. W. Golomb,Shift Register Sequences (Holden-Day, San Francisco, 1967).

    Google Scholar 

  17. R. B. Pearson,J. Comput. Phys. 49:478 (1983).

    Google Scholar 

  18. G. Birkhoff and S. MacLane,A Survey of Modern Algebra, 3rd ed. (Macmillan, New York, 1965).

    Google Scholar 

  19. E. Lucas,Théorie des nombres (Gauthier-Villars, Paris, 1891), p. 418.

    Google Scholar 

  20. F. Hausdorff,Math. Ann. 79:157 (1919).

    Google Scholar 

  21. L. F. Richardson,Proc. R. Soc. London Ser. A 110:709 (1926).

    Google Scholar 

  22. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  23. U. Frisch (with G. Parisi), inTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1984), p. 84.

    Google Scholar 

  24. S. J. Willson,Discrete Appl. Math. 8:91 (1984).

    Google Scholar 

  25. G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 5th ed. (Clarendon, Oxford, 1979).

    Google Scholar 

  26. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, 1983).

    Google Scholar 

  27. O. Martin, A. M. Odlyzko, and S. Wolfram, preprint (1983).

  28. Z. Kohavi,Switching and Finite Automata Theory, 2nd ed. (McGraw-Hill, New York, 1978).

    Google Scholar 

  29. J. E. Hopcroft and J. D. Ullman,Formal Languages and their Relation to Automata (Addison-Wesley, Reading, Massachusetts, 1969).

    Google Scholar 

  30. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983).

    Google Scholar 

  31. S. E. Newhouse, inDynamical Systems, J. Moser, ed. (Birkhäuser, Boston, 1980), Section 4.

    Google Scholar 

  32. C. Foias and R. Témam, inNonlinear Dynamics and Turbulence, G. I. Barenblatt, G. Looss, and D. D. Joseph, eds. (Pitman, Boston, 1983), p. 139.

    Google Scholar 

  33. C. E. Leith,J. Atmos. Sci. 37:958 (1980).

    Google Scholar 

  34. E. N. Lorenz,J. Atmos. Sci. 37:1685 (1980).

    Google Scholar 

  35. M. Ghil, inTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1984), p. 347.

    Google Scholar 

  36. M. Ghil and S. Childress,Topics in Geophysical Fluid Dynamics (Springer, New York, in press, 1985).

    Google Scholar 

  37. B. Saltzman,Adv. Geophys. 25:173 (1983).

    Google Scholar 

  38. M. R. Guevara, L. Glass. M. C. Mackey, and A. Shirer,IEEE Trans. Syst. Man Cybern. 13:790 (1983).

    Google Scholar 

  39. M. Ghil,Terra Cognita 4:336 (1984).

    Google Scholar 

  40. M. Ghil, A. Mullhaupt, and P. Pestiaux, preprint.

  41. A. P. Mullhaupt, inMathematical Problems from the Physics of Fluids, G. Gallavottiet al., eds., to appear.

  42. P. Pestiaux, Les Fonctions de Walsh Permettent une Quantification Précise des Entrées et Sorties Associées à des Systèmes Complexes Modélisés par des Équations Booléennes, Thèse Annexe, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghil, M., Mullhaupt, A. Boolean delay equations. II. Periodic and aperiodic solutions. J Stat Phys 41, 125–173 (1985). https://doi.org/10.1007/BF01020607

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020607

Key words

Navigation