Skip to main content
Log in

Enthalpy of dissociation of water at 325°C and LogK, ΔH, ΔS, and ΔC p values for the formation of NaOH(aq) from 250 to 325°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous reactions H++OH=H2O at 325°C and Na++OH= NaOH(aq) at 250–325°C, were studied using a flow calorimeter. Heats of mixing of aqueous NaOH and HCl solutions were measured at 325°C. The enthalpy of water formation (ΔH=95.9 kJ-mol−1, valid at 12.4 MPa and infinite dilution) was obtained at this temperature from the heat of mixing data but differs significantly from that calculated from the Marshall-Franck equation. This calorimetric ΔH at 325°C was used in combination with literaturelog K and ΔH values at lower temperatures to derive equations representinglog K, ΔH, ΔS, and ΔCp for the formation of water from 250 to 325°C. Heats of dilution of aqueous NaOH solutions were measured at 250, 275, 300, and 325°C. Log K, ΔH, and ΔS for the formation of NaOH(aq) were determined at these temperatures from the fits of the calculated and measured heats while ΔCp values were calculated from the variation of ΔH with temperature. No previous experimental results have been reported for the formation of NaOH(aq). The isocoulombic reaction principle is tested using thelog K values obtained in this study. The plot oflog K vs. 1/T for the isocoulombic reaction NaOH(aq) +H+=H2O+Na+ is approximately linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Noyes,The Electrical Conductivity of Aqueous Solutions (Carnegie Institute of Washington, Pub. No. 63, 1907).

  2. A. A. Noyes, Y. Kato, and R.B. Sosman,J. Am. Chem. Soc. 32, 159 (1910).

    Google Scholar 

  3. H. S. Harned and B. B. Owen,Physical Chemistry of Electrolytic Solutions, 3rd edn., (Reinhold, New York, 1958).

    Google Scholar 

  4. F. H. Sweeton, R. E. Mesmer, and C. F. Baes, Jr.,J. Solution Chem. 3, 191 (1974).

    Google Scholar 

  5. W. L. Marshall and E. U. Franck,J. Phys. Chem. Ref. Data 10, 295 (1981).

    Google Scholar 

  6. G. Olofsson and I. Olofsson,J. Chem. Thermodyn. 5, 533 (1973).

    Google Scholar 

  7. G. Olofsson and L. G. Hepler,J. Solution Chem. 4, 127 (1975).

    Google Scholar 

  8. L. G. Sillen and A. E. Martell,Stability Constants of Metal-Ion Complexes (The Chemical Society, Burlington, London, 1964).

    Google Scholar 

  9. C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  10. R. M. Smith and A. E. Martell,Critical Stability Constants. Inorganic Complexes, Vol. 4 (Plenum, New York, 1976).

    Google Scholar 

  11. A. De Robertis, S. Sammartano, and G. Rigano,Thermochim. Acta 74, 343 (1984).

    Google Scholar 

  12. A. V. Plyasunov, A. B. Belonozhko, I. P. Ivanov, and I. L. Khodakovskiy,Geochem. Int. 25, 77 (1988).

    Google Scholar 

  13. L. N. Var'yash,Geochem. Int. 23, 82 (1986).

    Google Scholar 

  14. J. M. Simonson, R. E. Mesmer, and P. S. Z. Rogers,J. Chem. Thermodyn. 21, 561 (1989).

    Google Scholar 

  15. R. T. Pabalan and K. S. Pitzer,Geochim. Cosmochim. Acta 51, 829 (1987).

    Google Scholar 

  16. W. T. Lindsay, Jr., inProceedings of the 41 st International Water Conference (Pittsburgh, PA, 1980).

  17. W. T. Lindsay, Jr., inThe ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed., (The American Society of Mechanical Engineers, New York, 1989) Chap. 7.

    Google Scholar 

  18. J. P. Hershey, R. Damesceno, and F. J. Millero,J. Solution Chem. 13, 825 (1984).

    Google Scholar 

  19. J. M. Simonson and R. J. Ryther,J. Chem. Eng. Data 34, 57 (1989).

    Google Scholar 

  20. J. L. Oscarson, X. Chen, S. E. Gillespie, and R. M. Izatt,Thermochim. Acta 185, 51 (1991).

    Google Scholar 

  21. X. Chen, Ph.D. Dissertation, Brigham Young University, (Provo, Utah, 1991).

  22. R. M. Izatt, J. L. Oscarson, X. Chen, and S. E. Gillespie,Determination of Thermodynamic Data for Modeling Corrosion. Volume 3: CO 2 −NaOH−H 2 O System, EPRI Report NP-5708 (Electric Power Research Institute, Palo Alto, CA, 1992).

    Google Scholar 

  23. S. E. Gillespie, J. L. Oscarson, X. Chen, R. M. Izatt, and C. Pando,J. Solution Chem. 21, 761 (1992).

    Google Scholar 

  24. H. P. Meissner, inThermodynamics of Aqueous Systems with Industrial Applications, ACS Symposium Series No. 133, S. A. Newman, ed. (American Chemical Society, Washington, D.C., 1980).

    Google Scholar 

  25. H. P. Meissner and J. W. Tester,Ind. Eng. Chem. Proces Des. Dev. 11, 128 (1972).

    Google Scholar 

  26. H. P. Meissner, C. L. Kusik, and J. C. Tester,AIChEJ. 18, 661 (1972).

    Google Scholar 

  27. A. R. Parkinson, R. J. Balling, and J. C. Free, inProceedings ASME Int. Computers in Eng. Conf. (Las Vegas, NV, 1984).

  28. J. R. Fisher and H. L. Barnes,J. Phys. Chem. 76, 90 (1972).

    Google Scholar 

  29. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes,J. Solution Chem. 17, 699 (1988).

    Google Scholar 

  30. R. M. Izatt, J. J. Christensen, J. L. Oscarson, and S. E. Gillespie,Determination of Thermodynamic Data for Modeling Corrosion. Volume 2: Chlorides and Acetates, EPRI Report NP-5708 (Electric Power Research Institute, Palo Alto, CA, 1989).

    Google Scholar 

  31. L. Haar, J. S. Gallagher, and G. S. Kell,NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere, Washington, 1984).

    Google Scholar 

  32. A. S. Quist,J. Phys. Chem. 74, 3396 (1970).

    Google Scholar 

  33. D. J. Turner, inProceedings: 1987 Symposium on Chemistry in High-Temperature Water, R. M. Izatt, J. L. Oscarson, and G. C. LindH, eds., EPRI Report NP-6005 (Electric Power Research Institute, Palo Alto, CA, 1990).

    Google Scholar 

  34. International Association for the Properties of Steam,Release on the Ion Product of Water Substance (May, 1980).

  35. J. M. Simonson, H. F. Holmes, R. E. Mesmer, and R. H. Busey, inProceedings: 1987 Symposium on Chemistry in High-Temperature Water, R. M. Izatt, J. L. Oscarson, and G. C. LindH, eds., EPRI Report NP-6005 (Electric Power Research Institute, Palo Alto, CA. 1990).

    Google Scholar 

  36. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  37. R. C. Murray, Jr. and J. W. Cobble, inProceedings of the 41 st International Water Conference (Pittsburgh, PA, 1980).

  38. A. J. Read,J. Solution Chem. 4, 53 (1975).

    Google Scholar 

  39. C. S. Patterson, G. H. Slocum, R. H. Busey, and R. E. Mesmer,Geochim. Cosmochim. Acta 46, 1653 (1982).

    Google Scholar 

  40. E. F. Hitch and R. E. Mesmer,J. Solution Chem. 5, 667 (1976).

    Google Scholar 

  41. R. E. Mesmer and C. F. Baes, Jr.,J. Solution Chem. 3, 307 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Taken in part from the Ph.D. Dissertation of Xuemin Chen, Brigham Young University, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuemin Chen, Gillespie, S.E., Oscarson, J.L. et al. Enthalpy of dissociation of water at 325°C and LogK, ΔH, ΔS, and ΔC p values for the formation of NaOH(aq) from 250 to 325°C. J Solution Chem 21, 803–824 (1992). https://doi.org/10.1007/BF00651510

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651510

Key words

Navigation