Skip to main content
Log in

Apparent molar heat capacities and volumes of electrolytes and ions in acetonitrile-water mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar volumes Vφ and heat capacities Cp,φ of NaCl, KCl, KNO3, AgNO3, KI, NaBPh4 and Ph4PCl have been measured in acetonitrile (AN)-water mixtures up to xAN=0.25 by flow densitometry and flow microcalorimetry. Limited data have also been obtained for NaF, LiCl and KBr up to x AN =0.15. Single ion volumes and heat capacities of transfer were obtained using the assumption ΔtXφ(PH4P+) = ΔtXφ(BPh4-) where X=V or C p and ΔtXφ is the change in Xφ for a species on transfer from H2O to AN-H2O mixtures. Volumes and heat capacities for simple salts show relatively little dependence on solvent composition. However, ΔtXφ for simple ions show more pronounced variations, exhibiting at least one extremum. These extrema are similar to but much less pronounced than those derived previously for ions in t-butanol-water mixtures. Surprisingly little correlation is found between the present data and other thermodynamic transfer functions. This is attributed to the predominance of ion-solvent over solvent-solvent interactions in AN-H2O solutions. ΔtVφ and ΔtCp,φ for the silver ion differ markedly from those of the alkali metal ions as a result of the well-known specific interaction between Ag+ and AN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Marcus,Ion-Solvation (Wiley, New York, 1985).

    Google Scholar 

  2. B. G. Cox and W. E. Waghorne,Chem. Soc. Rev. 381 (1980).

  3. Y. Marcus,Rev. Anal. Chem. 5, 53 (1981).

    Google Scholar 

  4. B. G. Cox, A. J. Parker, and W. E. Waghorne,J. Phys. Chem. 78, 1731 (1974). (1974).

    Google Scholar 

  5. B. G. Cox, R. Natarajan, and W. E. Waghorne,J. Chem. Soc. Faraday Trans. I 75, 86 (1979).

    Google Scholar 

  6. E. De Valera, D. Feakins, and W. E. Waghorne,J. Chem. Soc. Faraday Trans. I 79, 1061 (1983).

    Google Scholar 

  7. Y. P. Handa and G. C. Benson,J. Solution Chem. 10, 291 (1981).

    Google Scholar 

  8. G. C. Benson, P. J. D'Arcy, and Y. P. Handa,Thermochim. Acta 46, 295 (1981).

    Google Scholar 

  9. R. Diguet,Chemical Reactivity in Liquids (Plenum, New York, 1988) p. 105.

    Google Scholar 

  10. A. J. Parker, B. W. Clare, and R. P. Smith,Hydrometallurgy 4, 233 (1979).

    Google Scholar 

  11. A. J. Parker,Pure Appl. Chem. 53, 1437 (1981).

    Google Scholar 

  12. B. W. Clare, P. Singh, P. Mangano, A. J. Parker, and D. M. Muir,Austral. J. Chem. 36, 1687 (1983).

    Google Scholar 

  13. P. Singh, I. D. MacLeod, and A. J. Parker,Austral. J. Chem. 36, 1675 (1983).

    Google Scholar 

  14. M. H. Abraham and Y. Marcus,J. Chem. Soc. Faraday Trans. I 82, 3255 (1986).

    Google Scholar 

  15. G. T. Hefter, J.-P. E. Grolier, and A. H. Roux,J. Solution Chem. 18, 229 (1989).

    Google Scholar 

  16. E. Wilhelm, J.-P. E. Grolier, and M. H. Karbalai Ghassemi,Ber. Bunsenges. Phys. Chem. 81, 925 (1977).

    Google Scholar 

  17. J.-P. E. Grolier, E. Wilhelm, and M. H. Hamedi,Ber. Bunsenges. Phys. Chem. 82, 1282 (1978).

    Google Scholar 

  18. L. Avedikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).

    Google Scholar 

  19. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  20. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  21. C. Treiner,Can. J. Chem. 55, 682 (1977).

    Google Scholar 

  22. F. J. Millero,Chem. Rev. 71, 147 (1971).

    Google Scholar 

  23. C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers,Can. J. Chem. 50, 3167 (1972).

    Google Scholar 

  24. O. Enea, P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler,J. Chem. Thermodyn. 9, 731 (1977).

    Google Scholar 

  25. J. E. Desnoyers, C. De Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  26. G. C. Allred and E. M. Woolley,J. Chem. Thermodyn. 13, 147 (1981).

    Google Scholar 

  27. M. R. J. Dack, K. J. Bird, and A. J. Parker,Austral. J. Chem. 28, 955 (1978).

    Google Scholar 

  28. R. Zana, G. Perron, and J. E. Desnoyers,J. Solution Chem. 8, 729 (1979).

    Google Scholar 

  29. C. De Visser, W. J. M. Heuvelsland, L. A. Dunn, and G. Somsen,J. Chem. Soc. Faraday Trans. I. 74, 1159 (1978).

    Google Scholar 

  30. J. I. Kim,Bull. Soc. Chim. Belg. 95, 435 (1986); and references cited therein.

    Google Scholar 

  31. J. I. Lankford and C. M. Criss,J. Solution Chem. 16, 753 (1987).

    Google Scholar 

  32. K. M. Kale and R. Zana,J. Solution Chem. 6, 733 (1977).

    Google Scholar 

  33. G. T. Hefter and P. J. McLay,J. Solution Chem. 17, 535 (1988).

    Google Scholar 

  34. L. G. Hepler,J. Phys. Chem. 61, 1426 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hefter, G.T., Grolier, J.P.E., Roux, A.H. et al. Apparent molar heat capacities and volumes of electrolytes and ions in acetonitrile-water mixtures. J Solution Chem 19, 207–223 (1990). https://doi.org/10.1007/BF00650455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650455

Key words

Navigation