Skip to main content
Log in

Calculation of the transport properties of aqueous species at pressures to 5 KB and temperatures to 1000°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The limiting equivalent conductances at temperatures from 0° to 1000°C and pressures from 1 to 5000 bars of a large number of aqueous ions have been calculated from limiting equivalent conductances of electrolytes reported in the literature. The limiting equivalent conductances of individual ions typically increase by a factor of about 15 with increasing temperatures from 0° to 1000°C and decrease about 30 percent with increasing pressure from 1 to 5 kb. The equivalent conductance of H2O approximated by the sum of the limiting equivalent conductances of H+ and OH is essentially independent of pressure, but increases from about 350 to a maximum of approximately 1800 S-cm2-equiv−1 in response to an increase in temperature from 0° to 500°C at 1kb. Stokes' law radii and Walden products generated from the computed limiting equivalent conductances of ions exhibit changes over the temperature and pressure range of interest by as much as 100 percent for all of the ions except H+ and OH, which vary by an order of magnitude. Apparent solvation numbers calculated as a function of pressure and temperature from the Stokes' law radii using the volume and dielectric constant of H2O and Born coefficients of the individual ions approach infinity at the critical point of H2O. Residual friction coefficients as a general rule approach zero as temperatures increases to 1000°C. The excess limiting equivalent conductances of the hydrogen and hydroxyl ions computed from the differences between the limiting equivalent conductances of HCl and KCl, and NaOH and NaCl, respectively, increases with increasing pressure, and maximize at 250°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).

    Google Scholar 

  2. B. S. Smolyakov and G. A. Veselova,Electrokhimiya 10, 851 (1974).

    Google Scholar 

  3. B. S. Smolyakov and G. A. Veselova,Electrokhimiya 11, 635 (1975).

    Google Scholar 

  4. W. L. Marshall,J. Chem. Phys. 87, 8301 (1987).

    Google Scholar 

  5. J. K. Fogo, S. W. Benson, and C. S. Copland,J. Chem. Phys. 22, 212 (1954).

    Google Scholar 

  6. E. U. Franck,Ziet. fur Phys. Chemie 8, 92 (1956).

    Google Scholar 

  7. A. S. Quist, E. U. Franck, H. R. Jolley, and W. L. Marshall,J. Phys. Chem. 67, 2453 (1963).

    Google Scholar 

  8. A. S. Quist, W. L. Marshall, and H. R. Jolley,J. Phys. Chem. 69, 2726 (1965).

    Google Scholar 

  9. A. S. Quist and W. L. Marshall,J. Phys. Chem. 70, 3714 (1966).

    Google Scholar 

  10. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 684 (1968).

    Google Scholar 

  11. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 1545 (1968).

    Google Scholar 

  12. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 2100 (1968).

    Google Scholar 

  13. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 3122 (1968).

    Google Scholar 

  14. G. Ritzert and E. U. Franck,Ber. Bunsenges. Physik. Chem. 73, 798 (1968).

    Google Scholar 

  15. K. Mangold and E. U. Franck,Ber. Bunsenges. Physik. Chem. 74, 21 (1969).

    Google Scholar 

  16. L. A. Dunn and W. L. Marshall,J. Phys. Chem. 73, 723 (1969).

    Google Scholar 

  17. J. D. Frantz and W. L. Marshall,Am. J. Sci. 282, 1666 (1982).

    Google Scholar 

  18. J. D. Frantz and W. L. Marshall,Am. J. Sci. 284, 651 (1984).

    Google Scholar 

  19. E. H. Oelkers and H. C. Helgeson,Geochim. Cosmochim. Acta 52, 63 (1988).

    Google Scholar 

  20. E. H. Oelkers and H. C. Helgeson,Geo. Soc. Am. Abstracts with Programs 16, 612 (1984).

    Google Scholar 

  21. A. S. Quist and W. L. Marshall,J. Phys. Chem. 73, 987 (1969).

    Google Scholar 

  22. E. H. Oelkers and H. C. Helgeson,J. Phys. Chem. 92, 1631 (1988).

    Google Scholar 

  23. J. C. Tanger and H. C. Helgeson,Am. J. Sci. 288, 19 (1988).

    Google Scholar 

  24. E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, and H. C. Helgeson,J. Chem. Soc. Faraday Trans. (in preparation).

  25. E. L. Shock, H. C. Helgeson, and D. A. SverjenskyGeochim. Cosmochim. Acta,53, (1989) (in press).

  26. E. L. Shock, and H. C. Helgeson,Geochim. Cosmochim. Acta 52, 2009 (1988).

    Google Scholar 

  27. E. L. Shock, and H. C. Helgeson,Geochim. Cosmochim. Acta 53, (1989) (in press).

  28. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson,Geochim. Cosmochim. Acta 53, (1989), (in press).

  29. C. A. Angell,Ann. Rev. Phys. Chem. 34, 593 (1983).

    Google Scholar 

  30. H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 274, 1098 (1974).

    Google Scholar 

  31. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  32. J. Smith and E. B. Dismukes,J. Phys. Chem. 68, 1603 (1964).

    Google Scholar 

  33. H. G. David and S. D. Hamann,Trans. Faraday Soc. 55, 72 (1959).

    Google Scholar 

  34. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman,Soviet Phys.-JEPT 11, 15 (1960).

    Google Scholar 

  35. A. W. Lawson and A. J. Hughes, inHigh Pressure Physics and Chemistry R. S. Stanely ed., (Acedemic Press, London), 207 (1963).

    Google Scholar 

  36. S. D. Hamann and M. Linton,Trans. Faraday Soc. 62, 2234 (1966).

    Google Scholar 

  37. W. Holtzapfel and E. U. Franck,Ber. Bunsenges. 70, 1105 (1966).

    Google Scholar 

  38. W. Holtzapfel,J. Chem. Phys. 50, 4424 (1969).

    Google Scholar 

  39. K. Tödehide, inWater A Comprehensive Treatise-Volume 1-The Physics and Physical Chemistry of Water F. Franks ed., (Plenum Press, New York, 1972).

    Google Scholar 

  40. W. L. Marshall,J. Chem. Eng. Data 32, 221 (1987).

    Google Scholar 

  41. J. T. R. Watson, R. S. Batu, and J. V. Sengers,J. Phys. Chem. Ref. Data 9, 1255 (1980).

    Google Scholar 

  42. R. L. Kay, inWater A Comprehensive Treatise Volume 3 Aqueous Solutions of Simple Electrolytes F. Franks ed., (Plenum Press, New York, 1973).

    Google Scholar 

  43. B. E. Conway,Ionic Hydration in Chemistry and Biophysics, (Elsevier Scientific Publishing Company, New York, 1981).

    Google Scholar 

  44. P. Walden,Z. Physik. Chem. 55, 207, 246 (1906).

    Google Scholar 

  45. M. Nakahara and K. Ibuki,J. Phys. Chem. 90, 1026 (1986).

    Google Scholar 

  46. Y. Marcus,Ion Solvation, (John Wiley and Sons Limited, New York, 1985).

    Google Scholar 

  47. H. Ulich,Trans. Faraday Trans. 23, 388 (1927).

    Google Scholar 

  48. H. C. Helgeson and D. K. Kirkham,Am. J. Sci. 276, 97 (1976).

    Google Scholar 

  49. H. C. Helgeson, G. C. Flowers, and D. H. Kirkham,Am. J. Sci. 281, 1249 (1981).

    Google Scholar 

  50. L. Haar, J. Gallagher, and G. Kell,NBS/NRC Steam Tables, (Hemisphere Press, Washington, 1984).

    Google Scholar 

  51. R. Zwanzig,J. Chem. Phys. 52, 3625 (1970).

    Google Scholar 

  52. J. Hubbard, L. Onsager,J. Chem. Phys. 67, 4850 (1977).

    Google Scholar 

  53. J. Hubbard,J. Chem. Phys. 68, 1649 (1978).

    Google Scholar 

  54. P. G. Wolynes,Ann. Rev. Phys. Chem. 31, 345 (1980).

    Google Scholar 

  55. H. Danneel,Electrochem. 11, 125 (1905).

    Google Scholar 

  56. E. Hückel,Electrochem. 34, 546 (1928).

    Google Scholar 

  57. J. D. Bernal and R. H. Fowler,J. Chem. Phys. 1, 515 (1933).

    Google Scholar 

  58. A. E. Sterne and H. Eyring,J. Chem. Phys. 5, 113 (1937).

    Google Scholar 

  59. B. C. Conway, J. O'M Brockris, and H. Linton,J. Chem. Phys. 24, 834 (1956).

    Google Scholar 

  60. T. Erdey-Gruz and S. Lengyel, inModern Aspects of Electrochemistry # 12, J O'M Brockris and B. E. Conway eds., (Plenum Press, New York, 1977).

    Google Scholar 

  61. S. D. Hamann,Physico-chemical Effects of Pressure, (Butterworth, London, 1956).

    Google Scholar 

  62. R. A. Horne and R. A. Courant,J. Phys. Chem. 69, 2224 (1965).

    Google Scholar 

  63. D. A. Lown and H. R. Thirsk,Trans. Faraday Soc. 67, 149 (1971).

    Google Scholar 

  64. H. Goldsmith and P. Dahl,Z. Phys. Chem. 108, 121 (1924).

    Google Scholar 

  65. P. Walden,Z. Phys. Chem. 108, 341 (1924).

    Google Scholar 

  66. G. Kortum and H. Wilski,Z. Phys. Chem. N. F. 2, 256 (1954).

    Google Scholar 

  67. L. A. Woolf,J. Phys. Chem. 64, 500 (1960).

    Google Scholar 

  68. T. Erdey-Gruz, E. Kugler, and L. Majthenyi,Electrochim. Acta 13, 947 (1968).

    Google Scholar 

  69. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, (Butterworths, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelkers, E.H., Helgeson, H.C. Calculation of the transport properties of aqueous species at pressures to 5 KB and temperatures to 1000°C. J Solution Chem 18, 601–640 (1989). https://doi.org/10.1007/BF00650999

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650999

Key words

Navigation