Skip to main content
Log in

Phylogenetic Relationships Between the Orders Artiodactyla and Cetacea: A Combined Assessment of Morphological and Molecular Evidence

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A character analysis of selected conservative morphological traits from extant and fossil artiodactyls and cetaceans was combined with a similar analysis of conservative nucleotide positions from the complete mitochondrial cytochrome b sequences of available extant artiodactyls, cetaceans, sirenians, perissodactyls, and other mammals. This combined analysis focuses on the evidence that supports conflicting hypotheses of artiodactyl monophyly, including the affinities of hippopotamids and the monophyly or paraphyly of odontocete cetaceans. Highly conserved morphological traits of the astragalus and deciduous dentition provide strong corroboration of artiodactyl monophyly, including extant and fossil hippopotamids. In contrast, cytochrome b gene sequences are incapable of confirming this monophyly, due to excessive homoplasy of nucleotide and amino acid traits within extant Eutheria. In like manner, highly conserved and uniquely derived morphological features of the skull and auditory regions provide robust corroboration of Odontoceti monophyly, including extant and fossil physeteroids. Several nucleotide similarities do exist between physeteroids and mysticetes; however, most are either silent third-position transversions or occur also in two or more odontocete families. We suggest that increased taxon sampling, combined with functional considerations of amino acids and their secondary structure in protein-coding genes, are essential requirements for the phylogenetic interpretations of molecules at higher taxonomic levels, especially when they conflict with well-supported hypotheses of mammalian phylogeny, corroborated by uniquely derived morphological traits from extant and fossil taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adachi, J., and Hasegawa, M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42: 459–469.

    Google Scholar 

  • Andrews, C. W. (1906). A Descriptive Catalogue of the Tertiary Vertebrata of the Fayum, Egypt, British Museum (Natural History), London.

    Google Scholar 

  • Arnason, U., and Gullberg, A. (1994). Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature 367: 726–728.

    Google Scholar 

  • Arnason, U., and Gullberg, A. (1996). Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol. Biol. Evol. 13: 407–417.

    Google Scholar 

  • Arnason, U., Bodin, K., Gullberg, A., Ledje, C., and Mouchaty, S. (1995). A molecular view of pinniped relationships with particular emphasis on the true seals. J. Mol. Evol. 40: 78–85.

    Google Scholar 

  • Arnason, U., Xu, X., and Gullberg, A. (1996). Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences. J. Mol. Evol. 42: 145–152.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Janke, A. (1997). Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and ferungulates. Mol. Biol. Evol. 14: 762–768.

    Google Scholar 

  • Baker, R. J., Taddei, V. A., Hudgeons, J. L., and Van den Bussche, R. A. (1994). Systematic relationships within Chiroderma (Chiroptera: Phyllostomidae) based on cytochrome b sequence variation. J. Mammal. 75: 321–327.

    Google Scholar 

  • Baker, R. J., Van den Bussche, R. A., Wright, A. J., Wiggins, L. E., Hamilton, M. J., Reat, E. P., Smith, M. H., Lomakin, M. D., and Chesser, R. K. (1996). High levels of genetic change in rodents of Chernobyl. Nature 380: 707–708.

    Google Scholar 

  • Barklow, W. (1995). Hippo talk. Nat. Hist. 104(5): 54.

    Google Scholar 

  • Barnes, L. G. (1984). Whales, dolphins and porpoises: Origin and evolution of the Cetacea. In: Mammals, Notes for a Short Course, P. D. Gingerich and C. E. Badgley, eds., pp. 139–154, University of Tennessee, Studies in Geology, Vol. 8.

  • Barnes, L. G. (1990). The fossil record and evolutionary relationships of the genus Tursiops. In: The Bottlenose Dolphin, S. Leatherwood and R. R. Reeves, eds., pp. 3–26, Academic Press, San Diego.

    Google Scholar 

  • Barnes, L. G., and McLeod, S. A. (1984). The fossil record and phyletic relationships of gray whales. In: The Gray Whale, Eschrichtius robustus, M. L. Jones, S. L. Swartz, and S. Leatherwood, eds., pp. 3–32, Academic Press, Orlando, FL.

    Google Scholar 

  • Barnes, L. G., Domning, D. P., and Ray, C. E. (1985). Status of studies on fossil marine mammals. Mar. Mamm. Sci. 1: 15–53.

    Google Scholar 

  • Black, C. C. (1978). Anthracotheriidae. In: Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 423–434, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Blainville, H. M. D. de (1839–1864). Ostéographie ou Description Iconographique Comparée du Squelette et du Système Dentaire des Mammifères Récents et Fossiles pour Servir de Base a la Zoologie et a la Géologie, Tome Quatrième, J. B. Baillière et Fils, Paris.

    Google Scholar 

  • Buntjer, J. B., Hoff, I. A., and Lenstra, J. A. (1997). Artiodactyl interspersed DNA repeats in cetacean genomes. J. Mol. Evol. 45: 66–69.

    Google Scholar 

  • Butler, P. M. (1969). Insectivores and bats from the Miocene of East Africa: New material. In: Fossil Vertebrates of Africa, L. S. B. Leakey, ed., pp. 1–37, Academic Press, New York.

    Google Scholar 

  • Butler, P. M. (1984). Macroscelidea, Insectivora, and Chiroptera from the Miocene of East Africa. Palaeovertebrata (Montpellier) 14: 117–200.

    Google Scholar 

  • Chikuni, K., Mori, Y., Tabata, T., Saito, M., Monma, M., and Kosugiyama, M. (1995). Molecular phylogeny based on the k-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J. Mol. Evol. 41: 859–866.

    Google Scholar 

  • Colbert, E. H. (1935). Distributional and phylogenetic studies on Indian fossil mammals. IV. The phylogeny of the Indian Suidae and the origin of the Hippopotamidae. Am. Mus. Novitates 799: 1–24.

    Google Scholar 

  • Collura, R. V., and Stewart, C. B. (1995). Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378: 485–489.

    Google Scholar 

  • Collura, R. V., Auerbach, M. R., and Stewart, C. B. (1996). A quick, direct method that can differentiate expressed mitochondrial genes from their nuclear pseudogenes. Curr. Biol. 6: 1337–1339.

    Google Scholar 

  • Cope, E. D. (1888–1889). The Artiodactyla. Am. Nat. 22: 1079–1095; 23: 111–136.

    Google Scholar 

  • Coryndon, S. (1977). The taxonomy and nomenclature of the Hippopotamidae (Mammalia, Artiodactyla) and a description of two new fossil species. Proc. Kon. Ned. Akad. von Wetensch. B 80: 61–88.

    Google Scholar 

  • Coryndon, S. (1978). Hippopotamidae. In: Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 483–495, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Cracraft, J., and Helm-Bychowski, K. (1991). Parsimony and phylogenetic inference using DNA sequences: Some methodological strategies. In: Phylogenetic Analysis of DNA Sequences, M. Miyamoto and J. Cracraft, eds., pp. 184–220, Oxford University Press, New York.

    Google Scholar 

  • Cranford, T. W., Amundin, M., and Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. J. Morphol. 228: 223–285.

    Google Scholar 

  • Cuvier, G. (1822). Recherches sur les Ossemens Fossiles, où l'on Rétablit Les Caractères de Plusieurs Animaux dont les Révolutions du Globe ont Détruit les Espèces, Nouvelle Édition, Tome Deuxième, Ire Partie. G. Dufour et E. D'Ocagne, Libraires, Paris.

    Google Scholar 

  • Dewalt, T. S., Sudman, P. D., Hafner, M. S., and Davis, S. K. (1993). Phylogenetic relationships of pocket gophers (Cratogeomys and Pappogeomys) based on mitochondrial DNA cytochrome b sequences. Mol. Phylogenet. Evol. 2: 193–204.

    Google Scholar 

  • Eltringham, S. K. (1993). The pygmy hippopotamus (Hexaprotodon liberiensis). In: Pigs. Peccaries, and Hippos. Status Survey and Conservation Action Plan, W. L. R. Oliver, ed., pp. 55–60, IUCN, Gland, Switzerland.

    Google Scholar 

  • Emlong, D. R. (1966). A new archaic cetacean from the Oligocene of northwest Oregon. Bull. Mus. Nat. Hist., Univ. Oreg. 3: 1–51.

    Google Scholar 

  • Erfurt, J., and Sudre, J. (1996). Eurodexeinae, eine neue Unterfamilie der Artiodactyla (Mammalia) aus dem Unter-und Mitteleozän Europas. Palaeovertebrata (Montpellier) 25: 371–390.

    Google Scholar 

  • Estes, R. D. (1991). The Behavior Guide to African Mammals, University of California Press, Berkeley.

    Google Scholar 

  • Faulkes, C. G., Bennett, N. C., Bruford, M. W., O'Brien, H. P., Aguilar, G. H., and Jarvis, J. U. M. (1997). Ecological constraints drive social evolution in the African mole-rats. Proc. Roy. Soc. Lond. B 264: 1619–1627.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods wll be positively misleading. Syst. Zool. 27: 401–410.

    Google Scholar 

  • Filhol, M. H. (1880). Etude des Mammifères fossiles de Saint-Gérand le Puy (Allier). Bibl. L'Ecole Haut. Etudes Sci. Nat. 20: 1–86.

    Google Scholar 

  • Fleischer, G. (1976). Hearing in extinct cetaceans as determined by cochlear structure. J. Paleontol. 50: 133–152.

    Google Scholar 

  • Fordyce, R. E., and Barnes, L. G. (1994). The evolutionary history of whales and dolphins. Annu. Rev. Earth Planet. Sci. 22: 419–455.

    Google Scholar 

  • Gatesy, J. (1997). More DNA support for a Cetacea/Hippopotamidae clade: The blood-clotting protein gene gamma-fibrinogen. Mol. Biol. Evol. 14: 537–543.

    Google Scholar 

  • Gatesy, J., Hayashi, C., Cronin, M. A., and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13: 954–963.

    Google Scholar 

  • Gatesy, J., Amato, G., Vrba, E., Schaller, G., and DeSalle, R. (1997). A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol. Phylogenet. Evol. 7: 303–319.

    Google Scholar 

  • Geisler, J. H., and Luo, Z. (1996). The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J. Paleontol. 70: 1045–1066.

    Google Scholar 

  • Geisler, J. H., and O'Leary, M. A. (1997). A phylogeny of Cetacea, Artiodactyla, Perissodactyla, and archaic ungulates: The morphological evidence. J. Vert. Paleontol. 17(3) (Suppl.): 48A.

    Google Scholar 

  • Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of the Artiodactyla. In: The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 235–272, Clarendon Press, Oxford.

    Google Scholar 

  • Gingerich, P. D., and Russell, D. E. (1981). Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 25: 235–246.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of Eocene Basilosaurus: Evidence of feet in whales. Science 249: 154–157.

    Google Scholar 

  • Graur, D., and Higgins, D. G. (1994). Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11: 357–364.

    Google Scholar 

  • Groves, P., and Shields, G. F. (1996). Phylogenetics of the Caprinae based on cytochrome b sequence. Mol. Phylogenet. Evol. 5: 467–476.

    Google Scholar 

  • Harrison, T. (1997). The anatomy, paleobiology, and phylogenetic relationships of the Hippopotamidae (Mammalia, Artiodactyla) from the Manonga Valley, Tanzania. In: Neogene Paleontology of the Manonga Valley, Tanzania, T. Harrison, ed., pp. 137–190, Plenum Press, New York.

    Google Scholar 

  • Hartenberger, J.-L. (1986). Hypothèse paléontologique sur l'origine des Macroscelidea (Mammalia). C.R. Acad. Sci. Paris 302: 247–249.

    Google Scholar 

  • Hasegawa, M., and Adachi, J. (1996). Phylogenetic position of cetaceans relative to artiodactyls: Reanalysis of mitochondrial and nuclear sequences. Mol. Biol. Evol. 13: 710–717.

    Google Scholar 

  • Hasegawa, M., Adachi, J., and Milinkovitch, M. C. (1997). Novel phylogeny of whales supported by total molecular evidence. J. Mol. Evol. 44(Suppl. 1): S117–S120.

    Google Scholar 

  • Hayssen, V., Van Tienhoven, A., and Van Tienhoven, A. (1993). Asdell's Patterns of Mammalian Reproduction, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic Systematics, University of Illinois Press, Urbana.

    Google Scholar 

  • Heyning, J. E. (1989). Comparative facial anatomy of beaked whales (Ziphiidae) and a systematic revision among the families of extant Odontoceti. Contrib. Sci. Nat. Hist. Mus. L.A. County 405: 1–64.

    Google Scholar 

  • Heyning, J. E. (1995). Masters of the Ocean Realm: Whales, Dolphins, and Porpoises, University of Washington Press, Seattle.

    Google Scholar 

  • Heyning, J. E. (1997). Sperm whale phylogeny revisited: Analysis of the morphological evidence. Mar. Mammal Sci. 13: 60–77.

    Google Scholar 

  • Heyning, J. E., and Mead, J. G. (1990). Evolution of the nasal anatomy of cetaceans. In: Sensory Abilities of Cetaceans, J. Thomas and R. Kastelein, eds., pp. 67–79, Plenum Press, New York.

    Google Scholar 

  • Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. Annu. Rev. Ecol. Syst. 18: 23–42.

    Google Scholar 

  • Honeycutt, R. L., and Adkins, R. M. (1993). Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses. Annu. Rev. Ecol. Syst. 24: 279–305.

    Google Scholar 

  • Hooijer, D. A. (1942). On the supposed hexaprotodont milk dentition in Hippopotamus amphibius L. Zool. Meded. Mus. Leiden 24: 187–196.

    Google Scholar 

  • Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., and Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 92: 532–536.

    Google Scholar 

  • Howell, A. B. (1930). Aquatic Mammals, Charles C Thomas, Springfield, IL.

    Google Scholar 

  • Irwin, D. M., and Arnason, U. (1994). Cytochrome b gene of marine mammals: Phylogeny and evolution. J. Mammal. Evol. 2: 37–55.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32: 128–144.

    Google Scholar 

  • Janis, C. M., and Scott, K. M. (1987). The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am. Mus. Novitates 2893: 1–85.

    Google Scholar 

  • Janke, A., Gemmell, N. J., Feldmaier-Fuchs, G., von Haeseler, A., and Paabo, S. (1996). The mitochondrial genome of a monotreme—The playtpus (Ornithorhynchus anatinus). J. Mol. Evol. 42: 153–159.

    Google Scholar 

  • Karlsen, K. (1962). Development of tooth germs and adjacent structures in the whalebone whale [Balaenoptera physalus (L.)]. Hvalradets Skrifter 45: 1–56.

    Google Scholar 

  • Kellogg, R. (1928). The history of whales—Their adaptation to life in the water. Q. Rev. Biol. 3: 29–76, 174–208.

    Google Scholar 

  • Kellogg, R. (1934). The Patagonian fossil whalebone whale, Cetotherium moreni (Lydekker). Carnegie Inst. Wash. Publ. 447: 63–81.

    Google Scholar 

  • Kellogg, R. (1936). A review of the Archaeoceti. Publ. Carnegie Inst. Wash. 482: 1–366.

    Google Scholar 

  • Ketten, D. R. (1992). The marine mammal ear: Specializations for aquatic audition and echolocation. In: The Evolutionary Biology of Hearing, D. B. Webster, R. R. Fay, and A. N. Popper, eds., pp. 717–750, Springer-Verlag, New York.

    Google Scholar 

  • Klingel, H. (1995). Fluctuating fortunes of the river horse. Nat. Hist. 104(5): 46–56.

    Google Scholar 

  • Kükenthal, W. (1891). On the adaptation of mammals to aquatic life. Ann. Mag. Nat. Hist. Ser. 6, 7: 153–179.

    Google Scholar 

  • Kuzmin, A. A. (1976). Embryogenesis of the osseous skull of the sperm whale (Physeter macrocephalus, Linnaeus, 1758). In: Investigations on Cetacea, Vol. VII, G. Pilleri, ed., pp. 187–202, Institute of Brain Anatomy, University of Berne, Berne, Switzerland.

    Google Scholar 

  • Lara, M. C., Patton, J. L., and Da Silva, M. N. F. (1996). The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete cytochrome b sequences. Mol. Phylogenet. Evol. 5: 403–413.

    Google Scholar 

  • Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S. (1996). Interordinal mammalian relationships: Evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 6: 245–258.

    Google Scholar 

  • Laws, R. M. (1984). Hippopotamuses. In: The Encyclopedia of Mammals, D. Macdonald, ed., pp. 506–511, Facts on File, New York.

  • Laws, R. M., and Clough, G. (1966). Observations on reproduction in the hippopotamus Hippopotamus amphibius Linn. Symp. Zool. Soc. Lond. 15: 117–140.

    Google Scholar 

  • Ledje, C., and Arnason, U. (1996). Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Caniformia. J. Mol. Evol. 42: 135–144.

    Google Scholar 

  • Lessa, E. P., and Cook, J. A. (1998). The molecular phylogenetics of tuco-tucos (genus Ctenomys, Rodentia: Octodontidae) suggests an early burst of speciation. Mol. Phylogenet. Evol. 9: 88–99.

    Google Scholar 

  • Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data. J. Mammal. Evol. 2: 255–283.

    Google Scholar 

  • Luo, Z. (1998 in press). Homology and transformation of cetacean ectotympanic structures. In: The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, J. G. M. Thewissen, ed., Plenum Press, New York.

    Google Scholar 

  • Luo, Z., and Marsh, K. (1996). Petrosal (periotic) and inner ear of a Pliocene kogiine whale (Kogiinae, Odontoceti): Implications on relationships and hearing evolution of toothed whale. J. Vert. Paleontol. 16: 328–348.

    Google Scholar 

  • Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. J. Mol. Evol. 36: 327–334.

    Google Scholar 

  • Matthee, C. A., and Robinson, T. J. (1997). Molecular phylogeny of the springhare, Pedetes capensis, based on mitochondrial DNA sequences. Mol. Biol. Evol. 14: 20–29.

    Google Scholar 

  • Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, Middle Eocene. Mem. Am. Mus. Nat. Hist. 9: 291–567.

    Google Scholar 

  • Matthew, W. D. (1937). Paleocene faunas of the San Juan Basin, New Mexico. Trans. Am. Phil. Soc. 30: 1–510.

    Google Scholar 

  • Matthew, W. D., and Granger, W. (1915). A revision of the Lower Eocene Wasatch and Wind River faunas. Bull. Am. Mus. Nat. Hist. 34: 1–103.

    Google Scholar 

  • McKean, C. F., Jump, E. B., and Weaver, M. E. (1971). The calcification pattern of deciduous teeth in miniature swine. Arch. Oral Biol. 16: 639–648.

    Google Scholar 

  • McKenna, M. C. (1987). Molecular and morphological analysis of high-level mammalian interrelationships. In: Molecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 55–93, Cambridge University Press, Cambridge.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Messenger, S. L., and McGuire, J. A. (1998). Morphology, molecules, and the phylogenetics of cetaceans. Syst. Biol. 47: 90–124.

    Google Scholar 

  • Milinkovitch, M. C. (1995). Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends Ecol. Evol. 10: 328–334.

    Google Scholar 

  • Milinkovitch, M. C., and Thewissen, J. G. M. (1997). Even-toed fingerprints on whale ancestry. Nature 388: 622–624.

    Google Scholar 

  • Milinkovitch, M. C., Orti, G., and Meyer, A. (1993). Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361: 346–348.

    Google Scholar 

  • Milinkovitch, M. C., Meyer, A., and Powell, J. R. (1994). Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes. Mol. Biol. Evol. 11: 939–948.

    Google Scholar 

  • Milinkovitch, M. C., LeDuc, R. G., Adachi, J., Farnir, F., Georges, M., and Hasegawa, M. (1996). Effects of character weighting and species sampling on phylogeny reconstruction: A case study based on DNA sequence data in cetaceans. Genetics 144: 1817–1833.

    Google Scholar 

  • Miller, G. S. (1923). The telescoping of the cetacean skull. Smithson. Misc. Coll. 76: 1–71.

    Google Scholar 

  • Mindell, D. P., and Thacker, C. E. (1996). Rates of molecular evolution: Phylogenetic issues and applications. Annu. Rev. Ecol. Syst. 27: 279–303.

    Google Scholar 

  • Mishler, B. D. (1994). Cladistic analysis of molecular and morphological data. Am. J. Phys. Anthropol. 94: 143–156.

    Google Scholar 

  • Miyamoto, M. M., and Cracraft, J. (1991). Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. In: Phylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 3–17, Oxford University Press, New York.

    Google Scholar 

  • Montegelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14: 550–559.

    Google Scholar 

  • Naylor, G. J. P., and Brown, W. M. (1997). Structural biology and phylogenetic estimation. Nature 388: 527–528.

    Google Scholar 

  • Naylor, G. J. P., and Brown, W. M. (1998). Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst. Biol. 47: 61–76.

    Google Scholar 

  • Noro, M., Masuda, R., Dubrovo, I. A., Yoshida, M. C., and Kato, M. (1998). Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J. Mol. Evol. 46: 314–326.

    Google Scholar 

  • Noubhani, A. (1988). Etude de la Variabilité de Numidotherium koholense Jaeger 1986 (Proboscidea). Unpublished Thesis, Université Pierre et Marie Curie (Paris VI), Paris.

  • Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183: 1–112.

    Google Scholar 

  • Novacek, M. J. (1992a). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    Google Scholar 

  • Novacek, M. J. (1992b). Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst. Biol. 41: 58–73.

    Google Scholar 

  • Novacek, M. J. (1993). Reflections on higher mammalian phylogenetics. J. Mammal. Evol. 1: 3–30.

    Google Scholar 

  • Ohdachi, S., Masuda, R., Abe, H., Adachi, J., Dokuchaev, N. E., Haukisalmi, V., and Yoshida, M. C. (1997). Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Sci. 14: 527–532.

    Google Scholar 

  • Okada, N. (1991). SINEs. Curr. Opin. Genet. Dev. 1: 498–504.

    Google Scholar 

  • O'Leary, M. A. (1998). Phylogenetic and morphometric reassessment of the dental evidence for a mesonychian and cetacean clade. In: The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, J. G. M. Thewissen, ed., Plenum Press, New York (in press).

    Google Scholar 

  • O'Leary, M. A., and Rose, K. D. (1995). Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J. Vert. Paleontol. 15: 401–430.

    Google Scholar 

  • Owen, R. (1848). Description of teeth and portions of jaws of two extinct anthracotheroid quadrupeds (Hyopotamus vectianus and Hyop. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight: With an attempt to develope Cuvier's idea of the classification of pachyderms by the number of their toes. Q. J. Geol. Sci. 4: 103–141.

    Google Scholar 

  • Ozawa, T., Hayashi, S., and Mikhelson, V. M. (1997). Phylogenetic position of mammoth and Stellar's sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J. Mol. Evol. 44: 406–413.

    Google Scholar 

  • Patton, J. L., and da Silva, M. N. F. (1995). A review of the spiny mouse genus Scolomys (Rodentia: Muridae: Sigmodontinae) with the description of a new species from the western Amazon of Brazil. Proc. Biol. Soc. Wash. 108: 319–337.

    Google Scholar 

  • Patton, J. L., dos Reis, S. F., and da Silva, M. N. F. (1996). Relationships among didelphid marsupials based on sequence variation in the mitochondrial cytochrome b gene. J. Mammal. Evol. 3: 3–29.

    Google Scholar 

  • Pearson, H. S. (1923). Some skulls of Perchoerus (Thinohyus) from the White River and John Day Formations. Bull. Am. Mus. Nat. Hist. 48: 61–96.

    Google Scholar 

  • Pearson, H. S. (1927). On the skulls of Early Tertiary Suidae, together with an account of the otic region in some other primitive Artiodactyla. Phil. Trans. Roy. Soc. Lond. B 215: 389–460.

    Google Scholar 

  • Pickford, M. (1983). On the origins of Hippopotamidae together with descriptions of two new species, a new genus and a new subfamily from the Miocene of Kenya. Geobios 16: 193–217.

    Google Scholar 

  • Pickford, M. (1989). Update on hippo origins. C.R. Acad. Sci. Paris Ser. II 309: 163–168.

    Google Scholar 

  • Pickford, M. (1990). Découverte de Kenyapotamus en Tunisie. Ann. Paléontol. 76: 277–283.

    Google Scholar 

  • Prothero, D. R. (1993). Ungulate phylogeny: Molecular vs. morphological evidence. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 173–181. Springer-Verlag, New York.

    Google Scholar 

  • Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In: The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 201–234, Clarendon Press, Oxford.

    Google Scholar 

  • Randi, E., Lucchini, V., and Hoong Diong, C. (1996). Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. J. Mammal. Evol. 3: 163–194.

    Google Scholar 

  • Randi, E., Mucci, N., Pierpaoli, M., and Douzery, E. (1998). New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proc. Roy. Soc. Lond. B 265: 1–9.

    Google Scholar 

  • Roosevelt, T. (1910). African Game Trails, Charles Scribner's Sons, New York.

    Google Scholar 

  • Rose, K. D. (1985). Comparative osetology of North American dichobunid artiodactyls. J. Paleontol. 59: 1203–1226.

    Google Scholar 

  • Rose, K. D. (1990). Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. In: Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America, T. M. Bown and K. D. Rose, eds., pp. 107–133, Geological Society of America, Special Paper, Boulder, CO.

    Google Scholar 

  • Rose, K. D. (1996). On the origin of the order Artiodactyla. Proc. Natl. Acad. Sci. USA 93: 1705–1709.

    Google Scholar 

  • Ruedi, M., and Fumagalli, L. (1996). Genetic structure of gymnures (genus Hylomys; Erinaceidae) on continental islands of Southeast Asia: Historical effects of fragmentation. J. Zool. Syst. Evol. Res. 34: 153–162.

    Google Scholar 

  • Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus. Am. Mus. Novit. 1356: 1–24.

    Google Scholar 

  • Schaeffer, B. (1948). The origin of a mammalian ordinal character. Evolution 2: 164–175.

    Google Scholar 

  • Schwartz, D. M. (1996). Snatching scientific secrets from the hippo's gaping jaws. Smithsonian 26: 90–101.

    Google Scholar 

  • Scott, W. B. (1940). The mammalian fauna of the White River Oligocene. Part IV. Artiodactyla. Trans. Am. Phil. Soc. 28: 363–746.

    Google Scholar 

  • Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. (1997). Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666–670.

    Google Scholar 

  • Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F. (1996). Primate phylogeny: Morphological vs molecular results. Mol. Phylogenet. Evol. 5: 102–154.

    Google Scholar 

  • Simons, E. L. (1991). Early Tertiary elephant-shrews from Egypt and the origin of the Macroscelidea. Proc. Natl. Acad. Sci. USA 88: 9734–9737.

    Google Scholar 

  • Simpson, C. D. (1984). Artiodactyls. In: Orders and Families of Recent Mammals of the World, S. Anderson and J. K. Jones, eds., pp. 563–587, John Wiley & Sons, New York.

    Google Scholar 

  • Simpson, G. G. (1961). Principles of Animal Taxonomy, Columbia University Press, New York.

    Google Scholar 

  • Smith, A. B. (1994). Rooting molecular trees: Problems and strategies. Biol. J. Linn. Soc. 51: 279–292.

    Google Scholar 

  • Smith, M. F. (1998). Phylogenetic relationships and geographic structure in pocket gophers in the genus Thomomys. Mol. Phylogenet. Evol. 9: 1–14.

    Google Scholar 

  • Smith, M. F., and Patton, J. L. (1993). The diversification of South American murid rodents: Evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50: 149–177.

    Google Scholar 

  • Smith, M. R., Shivji, M. S., Waddell, V. G., and Stanhope, M. J. (1996). Phylogenetic evidence from the IRBP gene for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of Artiodactyla. Mol. Biol. Evol. 13: 918–922.

    Google Scholar 

  • Stanley, H. F., Kadwell, M., and Wheeler, J. C. (1994). Molecular evolution of the family Camelidae: A mitochondrial DNA study. Proc. R. Soc. Lond. B 256: 1–6.

    Google Scholar 

  • Stehlin, H. G. (1899). Ueber die Geschichte des Suiden-Gebisses. Abh. Schweiz. Paläont. Ges. 26: 1–336.

    Google Scholar 

  • Stehlin, H. G. (1910). Die Säugetiere des schweizerischen Eocaens. Sechster Teil. Abh. Schweiz. Paläont. Ges. 36: 839–1164.

    Google Scholar 

  • Sudre, J. (1978). Les Artiodactyles de l'Eocène moyen et supérieur d'Europe occidentale; systématique et évolution. Mém. Trav. EPHE Inst. Montpellier 7: 1–229.

    Google Scholar 

  • Sudre, J., and Erfurt, J. (1996). Les Artiodactyles du gisement Yprésien terminal de Prémontré (Aisne, France). Palaeovertebrata 25: 391–414.

    Google Scholar 

  • Sudre, J., Russell, D. E., Louis, P., and Savage, D. E. (1983). Les Artiodactyles de L'Éocene inférieur d'Europe, Première partié. Bull. Mus. Nat. Hist. Nat. Paris 5: 281–333.

    Google Scholar 

  • Sullivan, J., and Swofford, D. L. (1997). Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mammal. Evol. 4: 77–86.

    Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, 2nd ed., D. M. Hillis, C. Moritz, and B. K. Mable, eds., pp. 407–510, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Taberlet, P., Fumagalli, L., and J. Hausser. (1994). Chromosomal versus mitochondrial DNA evolution: Tracking the evolutionary history of the southwestern European populations of the Sorex araneus group (Mammalia, Insectivora). Evolution 48: 623–636.

    Google Scholar 

  • Talbot, S. L., and Shields, G. F. (1996). A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Mol. Phylogenet. Evol. 5: 567–575.

    Google Scholar 

  • Tanaka, K., Solis, C. D., Masangkay, J. S., Maeda, K., Kawamoto, Y., and Namikawa, T. (1996). Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem. Genet. 34: 443–452.

    Google Scholar 

  • Thewissen, J. G. M. (1994). Phylogenetic aspects of cetacean origins: A morphological perspective. J. Mammal. Evol. 2: 157–184.

    Google Scholar 

  • Thewissen, J. G. M., and Hussain, S. T. (1990). Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anat. Histol. Embryol. 19: 37–48.

    Google Scholar 

  • Thewissen, J. G. M., and Hussain, S. T. (1998). Systematic review of the Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. In: Dawn of the Age of Mammals in Asia, K. C. Beard and M. R. Dawson, eds., pp. 220–238, Bull. Carnegie Mus. Nat. Hist. No. 34, Pittsburgh, PA.

  • Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. (1996). Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 28: 1–86.

    Google Scholar 

  • Thomas, W. K., and Martin, S. L. (1993). A recent origin of marmots. Mol. Phylogenet. Evol. 2: 330–336.

    Google Scholar 

  • Tobien, H. (1985). Zur Osteologie von Masillabune (Mammalia, Artiodactyla, Haplobunodontidae) aus dem Mitteleozän der Fossilfundstätte Messel bei Darmstadt (S-Hessen, Bundesrepublik Deutschland). Geol. Jb. Hessen 113: 5–58.

    Google Scholar 

  • Viret, J. (1961). Artiodactyla. In: Traité de Paléontologie, Vol. VI, J. Piveteau, ed., pp. 887–1084, Masson et Cie, Paris.

    Google Scholar 

  • Wägele, J. W. (1995). On the information content of characters in comparative morphology and molecular systematics. J. Zool. Syst. Evol. Res. 33: 42–47.

    Google Scholar 

  • Weaver, M. E., Jump, E. B., and McKean, C. F. (1966). The eruption pattern of deciduous teeth in miniature swine. Anat. Rec. 154: 81–86.

    Google Scholar 

  • Webb, S. D., and Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull. Am. Mus. Nat. Hist. 167: 121–157.

    Google Scholar 

  • Weber, M. (1904). Die Säugetiere, Gustav Fischer, Jena.

    Google Scholar 

  • Weber, M. (1928). Die Säugetiere, Zweite Auflage, Gustav Fischer, Jena.

    Google Scholar 

  • West, R. M. (1971). Deciduous dentition of the Early Tertiary Phenacodontidae (Condylarthra, Mammalia). Am. Mus. Novitates 2461: 1–37.

    Google Scholar 

  • Wilson, D. E., and Reeder, D. M. (1993). Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed., Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1997). Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60–66.

    Google Scholar 

  • Xu, X., and Arnason, U. (1996). A complete sequence of the mitochondrial genome of the Western lowland gorilla. Mol. Biol. Evol. 13: 691–698.

    Google Scholar 

  • Xu, X., and Arnason, U. (1997). The complete mitochondrial DNA sequence of the white rhinoceros, Ceratotherium simum, and comparison with the mtDNA sequence of the Indian rhinoceros, Rhinoceros unicornis. Mol. Phylogenet. Evol. 7: 189–194.

    Google Scholar 

  • Xu, X., Janke, A., and Arnason, U. (1996). The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla (+Cetacea). Mol. Biol. Evol. 13: 1167–1173.

    Google Scholar 

  • Yoder, A. D., Cartmill, M., Ruvolo, M., Smith, K., and Vilgalys, R. (1996). Ancient single origin for Malagasy primates. Proc. Natl. Acad. Sci. USA 93: 5122–5126.

    Google Scholar 

  • Zittel, K. A. von (1925). Text-Book of Palaeontology, Vol. III. Mammalia, Macmillan, London.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luckett, W.P., Hong, N. Phylogenetic Relationships Between the Orders Artiodactyla and Cetacea: A Combined Assessment of Morphological and Molecular Evidence. Journal of Mammalian Evolution 5, 127–182 (1998). https://doi.org/10.1023/A:1020501622015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020501622015

Navigation