Skip to main content
Log in

Ginzburg-Landau analysis of first-order transitions of elastically strained superconducting tin whiskers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A recently developed Ginzburg-Landau-type equation has been used to analyze measurements of the effect of stress on first-order superconducting transitions of tin whiskers. Assumptions were made as to the temperature dependence of the effective penetration depth and the validity of simple similarity. The analysis is in terms of three parameters of bulk tin. The critical temperature was measured directly at each stress. The other two parameters, namely the zero-temperature values of the critical field and the effective penetration depth, were computed at each stress by an optimization procedure. Combination of the three parameters gives a reasonable estimate of the average Fermi velocity but cannot reveal if this is stress-dependent. The critical temperature is known to increase linearly with stress along the tetragonal axis and quadratically at right angles to it, and the critical magnetic field is found to increase similarly at a slightly higher rate. The results are compared with those obtained for the same whiskers in the second-order region, and also with other measurements of related properties, such as the change in length of bulk single crystals at the superconducting transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Rothberg, F. R. N. Nabarro, and D. S. McLachlan,J. Low Temp. Phys. 5, 665 (1971).

    Google Scholar 

  2. B. D. Rothberg, Thesis, University of the Witwatersrand, Johannesburg (1972).

  3. F. R. N. Nabarro and B. D. Rothberg, inCooperative Phenomena, H. Haken and M. Wagner, eds. (Springer Verlag, Berlin, 1973), pp. 96–107.

    Google Scholar 

  4. B. D. Rothberg-Bibby, F. R. N. Nabarro, D. S. McLachlan, and M. J. Stephen,Philos. Trans. R. Soc. A 278 311–341 (1975).

    Google Scholar 

  5. B. D. Rothberg-Bibby, D. S. McLachlan, and F. R. N. Nabarro, inProceedings of the 14th International Conference on Low Temperature Physics, (North-Holland, Amsterdam, 1975), p. 117.

    Google Scholar 

  6. V. L. Ginzburg,Sov. Phys. JETP 7, 78 (1958).

    Google Scholar 

  7. H. J. Fink, D. S. McLachlan, and B. D. Rothberg-Bibby, inProgress in Low Temperature Physics, Vol. VIIb, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978), pp. 436–516.

    Google Scholar 

  8. J. F. Nye,Physical Properties of Crystals (Oxford University Press, 1960).

  9. D. P. Seraphim and P. M. Marcus,IBM J. Res. Dev. 6, 94 (1962).

    Google Scholar 

  10. J. W. Cook, Dissertation, Clemson University (1971).

  11. E. Schmid and W. Boas,Kristall-plastizität (Springer, Berlin, 1935).

    Google Scholar 

  12. M. D. Fiske,J. Phys. Chem. Soc. 2, 191–198 (1957).

    Google Scholar 

  13. F. R. N. Nabarro and B. Rothberg-Bibby,Philos. Trans. R. Soc. A 278, 343 (1975).

    Google Scholar 

  14. C. Herring and J. K. Galt,Phys. Rev. 85, 1060–1061 (1952).

    Google Scholar 

  15. J. H. Davis, M. J. Skove, and E. P. Stillwell,Solid State Commun. 4, 597 (1966).

    Google Scholar 

  16. C. L. Watlington, Thesis, Clemson University (1969).

  17. R. M. Fisher, L. S. Darken, and K. G. Carroll,Acta Metall. 2, 368 (1954).

    Google Scholar 

  18. P. E. Bradley, J. Franks, and P. E. Rush,Proc. Phys. Soc. (London)B 70, 889 (1957).

    Google Scholar 

  19. O. S. Lutes,Phys. Rev. 105, 1451 (1957).

    Google Scholar 

  20. D. K. Finnemore and D. E. Mapother,Phys. Rev. 140, A507 (1965).

    Google Scholar 

  21. M. Tinkham,Phys. Rev. 110, 26 (1958).

    Google Scholar 

  22. W. B. Ittner III,Phys. Rev. 119, 1591 (1960).

    Google Scholar 

  23. A. L. Schawlow and G. E. Devlin,Phys. Rev. 113, 120 (1959).

    Google Scholar 

  24. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  25. L. D. Jennings and C. A. Swenson,Phys. Rev. 112, 31 (1958).

    Google Scholar 

  26. H. R. Ott, Thesis, ETH, Zurich (1973), unpublished.

  27. M. Levy and J. L. Olsen, inPhysics of High Pressure and the Condensed Phase, A. F. Van Itterbeck, ed. (North-Holland, Amsterdam, 1965), p. 525.

    Google Scholar 

  28. R. I. Boughton, T. L. Olsen, and C. Palmy,Prog. Low Temp. Phys. 6, 163 (1970).

    Google Scholar 

  29. R. Meservey and B. B. Schwarz, inSuperconductivity, R. D. Parks, ed. (Dekker, New York, 1969), p. 171.

    Google Scholar 

  30. T. E. Faber and A. B. Pippard,Proc. Roy. Soc. (London)A 231, 336 (1955).

    Google Scholar 

  31. B. D. Rothberg,Philos. Mag. 25, 1473 (1972).

    Google Scholar 

  32. J. A. Rayne and B. S. Chandrasekhar,Phys. Rev. 120, 1658 (1960).

    Google Scholar 

  33. N. L. Muench,Phys. Rev. 99, 1814 (1955).

    Google Scholar 

  34. J. E. Schirber and C. A. Swenson,Phys. Rev. 127, 72 (1962).

    Google Scholar 

  35. G. D. Cody,Phys. Rev. 111, 1078 (1958).

    Google Scholar 

  36. G. K. White,Phys. Lett. 8, 294 (1964).

    Google Scholar 

  37. C. Grenier,C. R. Paris 238, 2300 (1954);240, 2302 (1955);241, 862 (1955);241, 1275 (1955).

    Google Scholar 

  38. H. Rohrer,Helv. Phys. Acta 33, 675 (1960).

    Google Scholar 

  39. D. F. Gibbons and C. A. Renton,Phys. Rev. 114, 1257 (1959).

    Google Scholar 

  40. O. V. Lounasmaa,Philos. Mag. 652 (1958).

  41. B. D. Rothberg-Bibby,J. Phys. E 8, 358–359 (1975).

    Google Scholar 

  42. B. D. Rothberg-Bibby,Opt. Laser Technol. 9, 89–90 (1977).

    Google Scholar 

  43. M. Abramowitz and J. A. Stegun, eds.,Handbook of Mathematical Functions, NBS, Washington, D.C.

  44. P. James and M. Roos,Computer Physics Communications (North-Holland, 1975), vol. 10, pp. 343–367.

  45. E. Fawcett, inThe Fermi Surface, W. A. Harrison and M. B. Webb, eds. (Wiley, New York, 1960), p. 197.

    Google Scholar 

  46. G. Rickayzen, inSuperconductivity, R. D. Parks, ed. (Dekker, New York, 1969).

    Google Scholar 

  47. R. Meservey and B. B. Schwarz, inSuperconductivity, R. D. Parks, ed. (Dekker, New York, 1969), p. 168.

    Google Scholar 

  48. G. Weisz,Phys. Rev. 149, 504 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothberg-Bibby, B.D., Fink, H.J., McLachlan, D.S. et al. Ginzburg-Landau analysis of first-order transitions of elastically strained superconducting tin whiskers. J Low Temp Phys 53, 375–404 (1983). https://doi.org/10.1007/BF00682485

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682485

Keywords

Navigation